

Detailed Site Investigation, Finucane Reserve, 1 Finucane Crescent, Matraville NSW

Randwick City Council

Internal Quality Control Review and Glossary

General

- Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follow guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013. They are included in this QC report where applicable. Additional QC data may be available on request
- 2. Unless otherwise stated, all soil/sediment/solid results are reported on a dry weight basis.
- 3. Unless otherwise stated, all biota/food results are reported on a wet weight basis on the edible portion.
- 4. For CEC results where the sample's origin is unknown or environmentally contaminated, the results should be used advisedly.
- Actual LORs are matrix dependent. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds where annotated
- 7. SVOC analysis on waters is performed on homogenised, unfiltered samples unless noted otherwise.
- 8. Samples were analysed on an 'as received' basis.
- 9. Information identified in this report with blue colour indicates data provided by customers that may have an impact on the results.
- 10. This report replaces any interim results previously issued.

Holding Times

Please refer to the 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours before sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and despite any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the sampling date; therefore, compliance with these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether, the holding time is seven days; however, for all other VOCs, such as BTEX or C6-10 TRH, the holding time is 14 days.

Units

mg/kg: milligrams per kilogram mg/L: milligrams per litre ppm: parts per million μg/L: micrograms per litre ppb: parts per billion %: Percentage

org/100 mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100 mL: Most Probable Number of organisms per 100 millilitres

CFU: Colony Forming Unit Colour: Pt-Co Units (CU)

Terms

APHA American Public Health Association CEC Cation Exchange Capacity coc Chain of Custody

CP Client Parent - QC was performed on samples pertaining to this report CRM Certified Reference Material (ISO17034) - reported as percent recovery.

Dry Where moisture has been determined on a solid sample, the result is expressed on a dry weight basis

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

LOR Limit of Reporting

LCS Laboratory Control Sample - reported as percent recovery.

Method Blank In the case of solid samples, these are performed on laboratory-certified clean sands and in the case of water samples, these are performed on de-ionised water. Non-Client Parent - QC performed on samples not pertaining to this report, QC represents the sequence or batch that client samples were analysed within NCP

RPD Relative Percent Difference between two Duplicate pieces of analysis SPIKE Addition of the analyte to the sample and reported as percentage recovery

SRA Sample Receipt Advice

Surr - Surrogate The addition of a similar compound to the analyte target is reported as percentage recovery. See below for acceptance criteria.

Tributyltin oxide (bis-tributyltin oxide) - individual tributyltin compounds cannot be identified separately in the environment; however, free tributyltin was measured, and its values were converted stoichiometrically into tributyltin oxide for comparison with regulatory limits. твто

TCLP Toxicity Characteristic Leaching Procedure TEQ Toxic Equivalency Quotient or Total Equivalence

QSM US Department of Defense Quality Systems Manual Version 6.0

US EPA United States Environmental Protection Agency

Sum of PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA WA DWER

QC - Acceptance Criteria

The acceptance criteria should only be used as a guide and may be different when site-specific Sampling Analysis and Quality Plan (SAQP) have been implemented.

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is <30%; however, the following acceptance guidelines are equally applicable:

Results <10 times the LOR: No Limit

Results between 10-20 times the LOR: RPD must lie between 0-50% Results >20 times the LOR: RPD must lie between 0-30%

NOTE: pH duplicates are reported as a range, not as RPD

Surrogate Recoveries: Recoveries must lie between 20-130% for Speciated Phenols & 50-150% for PFAS. SVOCs recoveries 20 - 150%, VOC recoveries 50 - 150%

PFAS field samples containing surrogate recoveries above the QC limit designated in QSM 6.0, where no positive PFAS results have been reported or reviewed, and no data was affected.

QC Data General Comments

- Where a result is reported as less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown are not data from your samples.
- pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore, laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of recovery, the term "INT" appears against that analyte
- For Matrix Spikes and LCS results, a dash "-" in the report means that the specific analyte was not added to the QC sample.
- Duplicate RPDs are calculated from raw analytical data; thus, it is possible to have two sets of data.

Quality Control Results

Test	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Method Blank						
Total Recoverable Hydrocarbons						
TRH C6-C9	mg/kg	< 20		20	Pass	
TRH C10-C14	mg/kg	< 20		20	Pass	
TRH C15-C28	mg/kg	< 50		50	Pass	
TRH C29-C36	mg/kg	< 50		50	Pass	
TRH C6-C10	mg/kg	< 20		20	Pass	
TRH >C10-C16	mg/kg	< 50		50	Pass	
TRH >C16-C34	mg/kg	< 100		100	Pass	
TRH >C34-C40	mg/kg	< 100		100	Pass	
Method Blank						
втех						
Benzene	mg/kg	< 0.1		0.1	Pass	
Toluene	mg/kg	< 0.1		0.1	Pass	
Ethylbenzene	mg/kg	< 0.1		0.1	Pass	
m&p-Xylenes	mg/kg	< 0.2		0.2	Pass	
o-Xylene	mg/kg	< 0.1		0.1	Pass	
Xylenes - Total*	mg/kg	< 0.3		0.3	Pass	
Method Blank		1 0.0		0.0	1 433	
Total Recoverable Hydrocarbons - 2013 NEPM F	ractions					
Naphthalene	mg/kg	< 0.5		0.5	Pass	
Method Blank	į ilig/kg	< 0.5		0.5	F 455	
		Т	T			
Polycyclic Aromatic Hydrocarbons		4 O F		0.5	Dasa	
Acenaphthene	mg/kg	< 0.5		0.5	Pass	
Acenaphthylene	mg/kg	< 0.5		0.5	Pass	
Anthracene	mg/kg	< 0.5		0.5	Pass	
Benz(a)anthracene	mg/kg	< 0.5		0.5	Pass	
Benzo(a)pyrene	mg/kg	< 0.5		0.5	Pass	
Benzo(b&j)fluoranthene	mg/kg	< 0.5		0.5	Pass	
Benzo(g.h.i)perylene	mg/kg	< 0.5		0.5	Pass	
Benzo(k)fluoranthene	mg/kg	< 0.5		0.5	Pass	
Chrysene	mg/kg	< 0.5		0.5	Pass	
Dibenz(a.h)anthracene	mg/kg	< 0.5		0.5	Pass	
Fluoranthene	mg/kg	< 0.5		0.5	Pass	
Fluorene	mg/kg	< 0.5		0.5	Pass	
Indeno(1.2.3-cd)pyrene	mg/kg	< 0.5		0.5	Pass	
Naphthalene	mg/kg	< 0.5		0.5	Pass	
Phenanthrene	mg/kg	< 0.5		0.5	Pass	
Pyrene	mg/kg	< 0.5		0.5	Pass	
Method Blank						
Organochlorine Pesticides						
Chlordanes - Total	mg/kg	< 0.1		0.1	Pass	
4.4'-DDD	mg/kg	< 0.05		0.05	Pass	
4.4'-DDE	mg/kg	< 0.05		0.05	Pass	
4.4'-DDT	mg/kg	< 0.05		0.05	Pass	
а-НСН	mg/kg	< 0.05		0.05	Pass	
Aldrin	mg/kg	< 0.05		0.05	Pass	
b-HCH	mg/kg	< 0.05		0.05	Pass	
d-HCH	mg/kg	< 0.05		0.05	Pass	
Dieldrin	mg/kg	< 0.05		0.05	Pass	
Endosulfan I	mg/kg	< 0.05		0.05	Pass	
Endosulfan II	mg/kg	< 0.05		0.05	Pass	

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Endosulfan sulphate	mg/kg	< 0.05	0.05	Pass	
Endrin	mg/kg	< 0.05	0.05	Pass	
Endrin aldehyde	mg/kg	< 0.05	0.05	Pass	
Endrin ketone	mg/kg	< 0.05	0.05	Pass	
g-HCH (Lindane)	mg/kg	< 0.05	0.05	Pass	
Heptachlor	mg/kg	< 0.05	0.05	Pass	
Heptachlor epoxide	mg/kg	< 0.05	0.05	Pass	
Hexachlorobenzene	mg/kg	< 0.05	0.05	Pass	
Methoxychlor	mg/kg	< 0.05	0.05	Pass	
Toxaphene	mg/kg	< 0.5	0.5	Pass	
Method Blank	Ilig/ikg	10.0	0.0	1 433	
Polychlorinated Biphenyls					
Aroclor-1016	mg/kg	< 0.1	0.1	Pass	
Aroclor-1221	mg/kg	< 0.1	0.1	Pass	
Aroclor-1232	mg/kg	< 0.1	0.1	Pass	
Aroclor-1242	mg/kg	< 0.1	0.1	Pass	
Aroclor-1248		< 0.1	0.1	Pass	
	mg/kg	< 0.1			
Aroclor-1254 Aroclor-1260	mg/kg	< 0.1	0.1	Pass Pass	
	mg/kg				
Total PCB*	mg/kg	< 0.1	0.1	Pass	
Method Blank					
Heavy Metals				-	
Arsenic	mg/kg	< 2	2	Pass	
Cadmium	mg/kg	< 0.4	0.4	Pass	
Chromium	mg/kg	< 5	5	Pass	
Copper	mg/kg	< 5	5	Pass	
Lead	mg/kg	< 5	5	Pass	
Mercury	mg/kg	< 0.1	0.1	Pass	
Nickel	mg/kg	< 5	5	Pass	
Zinc	mg/kg	< 5	5	Pass	
Method Blank		1	1		
Polycyclic Aromatic Hydrocarbons					
Acenaphthene	mg/kg	< 0.5	0.5	Pass	
Acenaphthylene	mg/kg	< 0.5	0.5	Pass	
Anthracene	mg/kg	< 0.5	0.5	Pass	
Benz(a)anthracene	mg/kg	< 0.5	0.5	Pass	
Benzo(a)pyrene	mg/kg	< 0.5	0.5	Pass	
Benzo(b&j)fluoranthene	mg/kg	< 0.5	0.5	Pass	
Benzo(g.h.i)perylene	mg/kg	< 0.5	0.5	Pass	
Benzo(k)fluoranthene	mg/kg	< 0.5	0.5	Pass	
Chrysene	mg/kg	< 0.5	0.5	Pass	
Dibenz(a.h)anthracene	mg/kg	< 0.5	0.5	Pass	
Fluoranthene	mg/kg	< 0.5	0.5	Pass	
Fluorene	mg/kg	< 0.5	0.5	Pass	
Indeno(1.2.3-cd)pyrene	mg/kg	< 0.5	0.5	Pass	
Naphthalene	mg/kg	< 0.5	0.5	Pass	
Phenanthrene	mg/kg	< 0.5	0.5	Pass	
Pyrene	mg/kg	< 0.5	0.5	Pass	
Method Blank	,				
Polychlorinated Biphenyls					
Aroclor-1016	mg/kg	< 0.1	0.1	Pass	
Aroclor-1221	mg/kg	< 0.1	0.1	Pass	
Aroclor-1232	mg/kg	< 0.1	0.1	Pass	
Aroclor-1242	mg/kg	< 0.1	0.1	Pass	

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Aroclor-1248	mg/kg	< 0.1	0.1	Pass	
Aroclor-1254	mg/kg	< 0.1	0.1	Pass	
Aroclor-1260	mg/kg	< 0.1	0.1	Pass	
Total PCB*	mg/kg	< 0.1	0.1	Pass	
Method Blank					
Polycyclic Aromatic Hydrocarbons					
Acenaphthene	mg/kg	< 0.5	0.5	Pass	
Acenaphthylene	mg/kg	< 0.5	0.5	Pass	
Anthracene	mg/kg	< 0.5	0.5	Pass	
Benz(a)anthracene	mg/kg	< 0.5	0.5	Pass	
Benzo(a)pyrene	mg/kg	< 0.5	0.5	Pass	
Benzo(b&j)fluoranthene	mg/kg	< 0.5	0.5	Pass	
Benzo(g.h.i)perylene	mg/kg	< 0.5	0.5	Pass	
Benzo(k)fluoranthene	mg/kg	< 0.5	0.5	Pass	
Chrysene	mg/kg	< 0.5	0.5	Pass	
Dibenz(a.h)anthracene	mg/kg	< 0.5	0.5	Pass	
Fluoranthene	mg/kg	< 0.5	0.5	Pass	
Fluorene	mg/kg	< 0.5	0.5	Pass	
Indeno(1.2.3-cd)pyrene	mg/kg	< 0.5	0.5	Pass	
Naphthalene	mg/kg	< 0.5	0.5	Pass	
Phenanthrene	mg/kg	< 0.5	0.5	Pass	
Pyrene	mg/kg	< 0.5	0.5	Pass	
Method Blank				T	
Organochlorine Pesticides					
Chlordanes - Total	mg/kg	< 0.1	0.1	Pass	
4.4'-DDD	mg/kg	< 0.05	0.05	Pass	
4.4'-DDE	mg/kg	< 0.05	0.05	Pass	
4.4'-DDT	mg/kg	< 0.05	0.05	Pass	
a-HCH	mg/kg	< 0.05	0.05	Pass	
Aldrin	mg/kg	< 0.05	0.05	Pass	
b-HCH	mg/kg	< 0.05	0.05	Pass	
d-HCH	mg/kg	< 0.05	0.05	Pass	
Dieldrin	mg/kg	< 0.05	0.05	Pass	
Endosulfan I	mg/kg	< 0.05	0.05	Pass	
Endosulfan II	mg/kg	< 0.05	0.05	Pass	
Endosulfan sulphate	mg/kg	< 0.05	0.05	Pass	
Endrin	mg/kg	< 0.05	0.05	Pass	
Endrin aldehyde	mg/kg	< 0.05	0.05	Pass	
Endrin ketone	mg/kg	< 0.05	0.05	Pass	
g-HCH (Lindane)	mg/kg	< 0.05	0.05	Pass	
Heptachlor	mg/kg	< 0.05	0.05	Pass	
Heptachlor epoxide	mg/kg	< 0.05	0.05	Pass	
Hexachlorobenzene	mg/kg	< 0.05	0.05	Pass	
Methoxychlor	mg/kg	< 0.05	0.05	Pass	
Toxaphene	mg/kg	< 0.5	0.5	Pass	
Method Blank				ı	
Polychlorinated Biphenyls	Т				
Aroclor-1016	mg/kg	< 0.1	0.1	Pass	
Aroclor-1221	mg/kg	< 0.1	0.1	Pass	
Aroclor-1232	mg/kg	< 0.1	0.1	Pass	
Aroclor-1242	mg/kg	< 0.1	0.1	Pass	
Aroclor-1248	mg/kg	< 0.1	0.1	Pass	
Aroclor-1254	mg/kg	< 0.1	0.1	Pass	
Aroclor-1260	mg/kg	< 0.1	0.1	Pass	

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Total PCB*	mg/kg	< 0.1	0.1	Pass	
LCS - % Recovery					
Total Recoverable Hydrocarbons					
TRH C6-C9	%	109	70-130	Pass	
TRH C10-C14	%	103	70-130	Pass	
TRH C6-C10	%	108	70-130	Pass	
TRH >C10-C16	%	95	70-130	Pass	
LCS - % Recovery					
ВТЕХ					
Benzene	%	105	70-130	Pass	
Toluene	%	106	70-130	Pass	
Ethylbenzene	%	107	70-130	Pass	
m&p-Xylenes	%	106	70-130	Pass	
o-Xylene	%	104	70-130	Pass	
Xylenes - Total*	%	105	70-130	Pass	
LCS - % Recovery			, , , , , , ,		
Total Recoverable Hydrocarbons - 2013 NEPM Fractions					
Naphthalene	%	110	70-130	Pass	
LCS - % Recovery		1 110	1 10-130	1 1 435	
Organochlorine Pesticides				l	
	0/	102	70 120	Door	
4.4'-DDD	%	102	70-130	Pass	
4.4'-DDT	%	113	70-130	Pass	
a-HCH	%	81	70-130	Pass	
Endosulfan I	%	92	70-130	Pass	
Endosulfan II	%	90	70-130	Pass	
Endosulfan sulphate	%	102	70-130	Pass	
Endrin	%	102	70-130	Pass	
Endrin aldehyde	%	82	70-130	Pass	
g-HCH (Lindane)	%	83	70-130	Pass	
LCS - % Recovery				ı	
Polycyclic Aromatic Hydrocarbons	1				
Acenaphthene	%	78	70-130	Pass	
Acenaphthylene	%	77	70-130	Pass	
Anthracene	%	74	70-130	Pass	
Benzo(a)pyrene	%	71	70-130	Pass	
Benzo(b&j)fluoranthene	%	76	70-130	Pass	
Benzo(k)fluoranthene	%	78	70-130	Pass	
Chrysene	%	75	70-130	Pass	
Dibenz(a.h)anthracene	%	82	70-130	Pass	
Fluoranthene	%	72	70-130	Pass	
Indeno(1.2.3-cd)pyrene	%	75	70-130	Pass	
Phenanthrene	%	73	70-130	Pass	
Pyrene	%	72	70-130	Pass	
LCS - % Recovery					
Organochlorine Pesticides					
Chlordanes - Total	%	81	70-130	Pass	
4.4'-DDE	%	76	70-130	Pass	
Aldrin	%	78	70-130	Pass	
b-HCH	%	77	70-130	Pass	
d-HCH	%	81	70-130	Pass	
Dieldrin	%	73	70-130	Pass	
Endrin ketone	%	73	70-130	Pass	
Heptachlor	%	81	70-130	Pass	
Heptachlor epoxide	%	73	70-130	Pass	<u> </u>

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Hexachlorobenzene	%	83	70-130	Pass	
Methoxychlor	%	71	70-130	Pass	
LCS - % Recovery					
Polychlorinated Biphenyls					
Aroclor-1016	%	72	70-130	Pass	
Aroclor-1260	%	76	70-130	Pass	
LCS - % Recovery					
Heavy Metals	T				
Arsenic	%	105	80-120	Pass	
Cadmium	%	102	80-120	Pass	
Chromium	%	101	80-120	Pass	
Copper	%	99	80-120	Pass	
Lead	%	109	80-120	Pass	
Mercury	%	100	80-120	Pass	
Nickel	%	100	80-120	Pass	
Zinc	%	101	80-120	Pass	
LCS - % Recovery			<u> </u>		
Polycyclic Aromatic Hydrocarbons	T	 			
Acenaphthene	%	109	70-130	Pass	
Acenaphthylene	%	115	70-130	Pass	
Anthracene	%	123	70-130	Pass	
Benz(a)anthracene	%	100	70-130	Pass	
Benzo(a)pyrene	%	105	70-130	Pass	
Benzo(b&j)fluoranthene	%	105	70-130	Pass	
Benzo(g.h.i)perylene	%	87	70-130	Pass	
Benzo(k)fluoranthene	%	114	70-130	Pass	
Chrysene	%	118	70-130	Pass	
Dibenz(a.h)anthracene	%	91	70-130	Pass	
Fluoranthene	%	124	70-130	Pass	
Fluorene	%	118	70-130	Pass	
Indeno(1.2.3-cd)pyrene	%	93	70-130	Pass	
Naphthalene	%	109	70-130	Pass	
Phenanthrene	%	112	70-130	Pass	
Pyrene	%	126	70-130	Pass	
LCS - % Recovery				I	
Polycyclic Aromatic Hydrocarbons	1 0/	00	70.400	D	
Acenaphthene	%	98	70-130	Pass	
Acenaphthylene	%	102	70-130	Pass	
Anthracene	%	106	70-130	Pass	
Benz(a)anthracene	%	98	70-130	Pass	
Benzo(a)pyrene	%	101	70-130	Pass	
Benzo(b&j)fluoranthene	%	104	70-130	Pass	
Benzo(g.h.i)perylene Benzo(k)fluoranthene	% %	105 97	70-130	Pass	
	<u>%</u>	94	70-130	Pass	
Chrysene Dibonz/a h)anthracona	<u>%</u>	105	70-130	Pass	
Dibenz(a.h)anthracene Fluoranthene	%	113	70-130 70-130	Pass Pass	
Fluorene	%	107	70-130	Pass	
Indeno(1.2.3-cd)pyrene	%	107	70-130		
	%			Pass Pass	
Naphthalene Phenanthrene	%	93 118	70-130 70-130	Pass	
	%	113	70-130		
Pyrene		110	1 /0-130	Pass	

Т	est		Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Aroclor-1016			%	92	70-130	Pass	
Aroclor-1260			%	102	70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery							
Total Recoverable Hydrocarb	ons			Result 1			
TRH C6-C9	S25-Ja0001165	NCP	%	110	70-130	Pass	
TRH C6-C10	S25-Ja0001165	NCP	%	111	70-130	Pass	
Spike - % Recovery							
BTEX	1			Result 1			
Benzene	S25-Ja0001165	NCP	%	98	70-130	Pass	
Toluene	S25-Ja0001165	NCP	%	105	70-130	Pass	
Ethylbenzene	S25-Ja0001165	NCP	%	107	70-130	Pass	
m&p-Xylenes	S25-Ja0001165	NCP	%	115	70-130	Pass	
o-Xylene	S25-Ja0001165	NCP	%	110	70-130	Pass	
Xylenes - Total*	S25-Ja0001165	NCP	%	113	70-130	Pass	
Spike - % Recovery							
Total Recoverable Hydrocarb	ons - 2013 NEPM Fract	ions		Result 1			
Naphthalene	S25-Ja0001165	NCP	%	100	70-130	Pass	
Spike - % Recovery							
Polycyclic Aromatic Hydroca	rbons			Result 1			
Acenaphthene	S24-De0057343	NCP	%	72	70-130	Pass	
Anthracene	S24-De0057343	NCP	%	81	70-130	Pass	
Fluoranthene	S24-De0057343	NCP	%	74	70-130	Pass	
Fluorene	S24-De0057343	NCP	%	77	70-130	Pass	
Naphthalene	S24-De0057343	NCP	%	72	70-130	Pass	
Phenanthrene	S24-De0057343	NCP	%	71	70-130	Pass	
Pyrene	S24-De0057343	NCP	%	73	70-130	Pass	
Spike - % Recovery							
Organochlorine Pesticides				Result 1			
4.4'-DDD	S24-De0057343	NCP	%	73	70-130	Pass	
Dieldrin	S24-De0057343	NCP	%	73	70-130	Pass	
Endrin	S24-De0057343	NCP	%	78	70-130	Pass	
Heptachlor epoxide	S24-De0057343	NCP	%	74	70-130	Pass	
Spike - % Recovery							
Heavy Metals				Result 1			
Arsenic	S24-De0058939	СР	%	102	75-125	Pass	
Cadmium	S24-De0058939	СР	%	98	75-125	Pass	
Chromium	S24-De0058939	СР	%	118	75-125	Pass	
Copper	S24-De0058939	CP	%	94	75-125	Pass	
Lead	S24-De0058939	CP	%	101	75-125	Pass	
Mercury	S24-De0058939	CP	%	98	75-125	Pass	
Nickel	S24-De0058939	CP	%	117	75-125	Pass	
Zinc	S24-De0058939	CP	%	105	75-125	Pass	
Spike - % Recovery	02 i D0000000	G.	,,,	100	10120	1 466	
Total Recoverable Hydrocarb	ons			Result 1			
TRH C10-C14	S24-De0058953	СР	%	92	70-130	Pass	
TRH >C10-C16	S24-De0058953	CP	%	91	70-130	Pass	
Spike - % Recovery	1 52 : 500000000		,,,	, , , , , , , , , , , , , , , , , , ,	1 70 100	. 400	
Polycyclic Aromatic Hydroca	rbons			Result 1			
Acenaphthylene	S25-Ja0002659	NCP	%	80	70-130	Pass	
Benz(a)anthracene	S25-Ja0002659	NCP	%	80	70-130	Pass	
Benzo(a)pyrene	S25-Ja0002659	NCP	%	84	70-130	Pass	
Benzo(b&j)fluoranthene	S25-Ja0002659	NCP	<u> </u>	80	70-130	Pass	
Benzo(g.h.i)perylene	S25-Ja0002659	NCP	%	86	70-130	Pass	

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Benzo(k)fluoranthene	S25-Ja0002659	NCP	%	80			70-130	Pass	
Chrysene	S25-Ja0002659	NCP	%	80			70-130	Pass	
Dibenz(a.h)anthracene	S25-Ja0002659	NCP	%	89			70-130	Pass	
Indeno(1.2.3-cd)pyrene	S25-Ja0002659	NCP	%	86			70-130	Pass	
Spike - % Recovery									
Organochlorine Pesticides				Result 1					
4.4'-DDT	S24-De0059090	NCP	%	90			70-130	Pass	
b-HCH	S24-De0059090	NCP	%	70			70-130	Pass	
Endosulfan II	S24-De0059090	NCP	%	93			70-130	Pass	
Endosulfan sulphate	S24-De0059090	NCP	%	91			70-130	Pass	
Endrin aldehyde	S24-De0059090	NCP	%	79			70-130	Pass	
Methoxychlor	S24-De0059090	NCP	%	94			70-130	Pass	
Spike - % Recovery									
Polychlorinated Biphenyls				Result 1					
Aroclor-1016	S25-Ja0002659	NCP	%	87			70-130	Pass	
Aroclor-1260	S24-De0059090	NCP	%	88			70-130	Pass	
Spike - % Recovery				•	,				
Organochlorine Pesticides				Result 1					
Chlordanes - Total	S24-De0058973	СР	%	75			70-130	Pass	
4.4'-DDE	S24-De0058973	СР	%	73			70-130	Pass	
Aldrin	S24-De0058973	СР	%	77			70-130	Pass	
d-HCH	S24-De0058973	СР	%	76			70-130	Pass	
Endosulfan I	S24-De0058973	СР	%	82			70-130	Pass	
Endrin ketone	S24-De0058973	СР	%	72			70-130	Pass	
Heptachlor	S24-De0058973	СР	%	77			70-130	Pass	
Hexachlorobenzene	S24-De0058973	СР	%	79			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Arsenic	S24-De0058935	СР	mg/kg	4.5	5.0	9.0	30%	Pass	
Cadmium	S24-De0058935	СР	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
Chromium	S24-De0058935	СР	mg/kg	18	12	36	30%	Fail	Q15
Copper	S24-De0058935	СР	mg/kg	10.0	15	40	30%	Fail	Q15
Lead	S24-De0058935	СР	mg/kg	30	35	16	30%	Pass	
Mercury	S24-De0058935	СР	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Nickel	S24-De0058935	СР	mg/kg	< 5	5.6	31	30%	Fail	Q15
Duplicate									
Organochlorine Pesticides				Result 1	Result 2	RPD			
a-HCH	S25-Ja0004507	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
g-HCH (Lindane)	S25-Ja0004507	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Duplicate									
Total Recoverable Hydrocarbons	3			Result 1	Result 2	RPD			
TRH C6-C9	S24-De0058950	CP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C10-C14	S24-De0058950	CP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C15-C28	S24-De0058950	CP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH C29-C36	S24-De0058950	СР	mg/kg	53	72	29	30%	Pass	
TRH C6-C10	S24-De0058950	СР	mg/kg	< 20	< 20	<1	30%	Pass	
					1 1	<1	30%	Pass	
TRH >C10-C16	S24-De0058950	CP	mg/kg	< 50	< 50	\	30 /0	1 000	
TRH >C10-C16 TRH >C16-C34	S24-De0058950 S24-De0058950	CP CP	mg/kg mg/kg	< 50 < 100	< 100	<1	30%	Pass	

-									
Duplicate									
BTEX				Result 1	Result 2	RPD			
Benzene	S24-De0058950	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Toluene	S24-De0058950	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Ethylbenzene	S24-De0058950	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
m&p-Xylenes	S24-De0058950	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
o-Xylene	S24-De0058950	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Xylenes - Total*	S24-De0058950	CP	mg/kg	< 0.3	< 0.3	<1	30%	Pass	
Duplicate									
Total Recoverable Hydrocarbo	ons - 2013 NEPM Fract	ions		Result 1	Result 2	RPD			
Naphthalene	S24-De0058950	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate									
Polycyclic Aromatic Hydrocar	bons			Result 1	Result 2	RPD			
Acenaphthene	S24-De0058950	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Acenaphthylene	S24-De0058950	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Anthracene	S24-De0058950	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benz(a)anthracene	S24-De0058950	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(a)pyrene	S24-De0058950	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(b&i)fluoranthene	S24-De0058950	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(g.h.i)perylene	S24-De0058950	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(k)fluoranthene	S24-De0058950	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Chrysene	S24-De0058950	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Dibenz(a.h)anthracene	S24-De0058950	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluoranthene	S24-De0058950	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluorene	S24-De0058950	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Indeno(1.2.3-cd)pyrene	S24-De0058950	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
, /i ,	S24-De0058950	CP		< 0.5	< 0.5	<1	30%		
Naphthalene			mg/kg	1			1	Pass	
Phenanthrene	S24-De0058950	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Pyrene	S24-De0058950	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate Duplicate				D 11.4		DDD	l		
Organochlorine Pesticides	004 B 0050050	- O.D.		Result 1	Result 2	RPD	000/		
Chlordanes - Total	S24-De0058950	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
4.4'-DDD	S24-De0058950	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDE	S24-De0058950	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDT	S24-De0058950	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Aldrin	S24-De0058950	CP	mg/kg	< 0.05	0.05	25	30%	Pass	
b-HCH	S24-De0058950	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
d-HCH	S24-De0058950	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Dieldrin	S24-De0058950	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan I	S24-De0058950	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan II	S24-De0058950	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan sulphate	S24-De0058950	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin	S24-De0058950	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin aldehyde	S24-De0058950	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin ketone	S24-De0058950	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor	S24-De0058950	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor epoxide	S24-De0058950	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Hexachlorobenzene	S24-De0058950	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Methoxychlor	S24-De0058950	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Toxaphene	S24-De0058950	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate									
Polychlorinated Biphenyls				Result 1	Result 2	RPD			
Aroclor-1016	S24-De0058950	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1221	S24-De0058950	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1232	S24-De0058950	CP	mg/kg	< 0.1	< 0.1	<1	30%		
			IIII/KO	- W. I	1 - 17.	_ · ·	3076	Pass	

Duplicate									
Polychlorinated Biphenyls				Result 1	Result 2	RPD			
Aroclor-1248	S24-De0058950	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1254	S24-De0058950	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1260	S24-De0058950	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Total PCB*	S24-De0058950	CP	mg/kg	< 0.1	< 0.1	<u> </u>	30%	Pass	
Duplicate	024-00000000	<u> </u>	i ilig/kg	1 10.1	, , 0.1		30 70	1 833	
Sample Properties				Result 1	Result 2	RPD			
% Moisture	S24-De0058950	CP	%	2.3	2.3	3.0	30%	Pass	
Duplicate Duplicate	024-00000000	<u> </u>	70	2.0	2.0	0.0	30 70	1 833	
Total Recoverable Hydrocarbo	ne .			Result 1	Result 2	RPD			
TRH C6-C9	S24-De0058953	CP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C6-C10	S24-De0058953	CP	mg/kg	< 20	< 20	<1	30%	Pass	
Duplicate	024 800000000	<u> </u>	i ilig/ilig	120	1 20		0070	1 433	
BTEX				Result 1	Result 2	RPD			
Benzene	S24-De0058953	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Toluene	S24-De0058953	CP CP	mg/kg	< 0.1	< 0.1	<u> </u>	30%	Pass	
Ethylbenzene	S24-De0058953	CP CP	mg/kg	< 0.1	< 0.1	<u> </u>	30%	Pass	
m&p-Xylenes	S24-De0058953	CP CP	mg/kg	< 0.1	< 0.1	<u> </u>	30%	Pass	
o-Xylene	S24-De0058953	CP CP	mg/kg	< 0.2	< 0.2	<u> </u>	30%	Pass	
Xylenes - Total*	S24-De0058953	CP CP	mg/kg	< 0.1	< 0.1	<u> </u>	30%	Pass	
Duplicate	324-060030333	OF.	i ilig/kg	_ \ 0.3	_		JU /0	F a55	
Heavy Metals				Result 1	Result 2	RPD			
Arsenic	S24-De0058966	CP	mg/kg	2.2	4.8	74	30%	Fail	Q15
Cadmium	S24-De0058966	CP	mg/kg	< 0.4	0.8	84	30%	Fail	Q15 Q15
Chromium	S24-De0058966	CP	mg/kg	9.3	51	140	30%	Fail	Q15 Q15
	S24-De0058966	CP	mg/kg	11	20	57	30%	Fail	Q15 Q15
Copper Lead	S24-De0058966	CP CP		75	84	11	30%	Pass	QIS
	S24-De0058966	CP CP	mg/kg	< 0.1	< 0.1	<u> </u>	30%	Pass	
Mercury	S24-De0058966	CP CP	mg/kg	< 5	8.7	88	30%	Fail	Q15
Nickel Zinc	S24-De0058966	CP CP	mg/kg	550	720	27	30%		QIS
	324-De0036900	CF_	mg/kg	330	120		30 /0	Pass	
Duplicate Total Recoverable Hydrocarbo	nc .			Result 1	Result 2	RPD			
TRH C10-C14	S24-De0058968	CP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C15-C28	S24-De0058968	CP	mg/kg	< 50	< 50	<u> </u>	30%	Pass	
TRH C29-C36	S24-De0058968	CP	mg/kg	< 50	< 50	<u> </u>	30%	Pass	
TRH >C10-C16	S24-De0058968	CP		< 50	< 50	<1	30%	Pass	
TRH >C16-C34	S24-De0058968	CP	mg/kg mg/kg	< 100	< 100	<1	30%	Pass	
TRH >C34-C40	S24-De0058968	CP	mg/kg	< 100	< 100	<1	30%	Pass	
	324-De0030900	Or .	i ilig/kg	\ 100	\ 100		30 /6	Fass	
Dunlicate									
Duplicate Polycyclic Aromatic Hydrocar	hons			Result 1	Result 2	BbU			
Polycyclic Aromatic Hydrocar		CP	ma/ka	Result 1	Result 2	RPD <1	30%	Page	
Polycyclic Aromatic Hydrocar Acenaphthene	S24-De0058968	CP CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Polycyclic Aromatic Hydrocar Acenaphthene Acenaphthylene	S24-De0058968 S24-De0058968	СР	mg/kg	< 0.5 < 0.5	< 0.5 < 0.5	<1 <1	30%	Pass	
Polycyclic Aromatic Hydrocar Acenaphthene Acenaphthylene Anthracene	S24-De0058968 S24-De0058968 S24-De0058968	CP CP	mg/kg mg/kg	< 0.5 < 0.5 < 0.5	< 0.5 < 0.5 < 0.5	<1 <1 <1	30% 30%	Pass Pass	
Polycyclic Aromatic Hydrocar Acenaphthene Acenaphthylene Anthracene Benz(a)anthracene	S24-De0058968 S24-De0058968 S24-De0058968 S24-De0058968	CP CP	mg/kg mg/kg mg/kg	< 0.5 < 0.5 < 0.5 < 0.5	< 0.5 < 0.5 < 0.5 < 0.5	<1 <1 <1 <1	30% 30% 30%	Pass Pass Pass	
Polycyclic Aromatic Hydrocar Acenaphthene Acenaphthylene Anthracene Benz(a)anthracene Benzo(a)pyrene	\$24-De0058968 \$24-De0058968 \$24-De0058968 \$24-De0058968 \$24-De0058968	CP CP CP	mg/kg mg/kg mg/kg mg/kg	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<1 <1 <1 <1 <1	30% 30% 30% 30%	Pass Pass Pass Pass	
Polycyclic Aromatic Hydrocar Acenaphthene Acenaphthylene Anthracene Benz(a)anthracene Benzo(a)pyrene Benzo(b&j)fluoranthene	\$24-De0058968 \$24-De0058968 \$24-De0058968 \$24-De0058968 \$24-De0058968 \$24-De0058968	CP CP CP CP	mg/kg mg/kg mg/kg mg/kg mg/kg	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<1 <1 <1 <1 <1 <1	30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass	
Polycyclic Aromatic Hydrocar Acenaphthene Acenaphthylene Anthracene Benz(a)anthracene Benzo(a)pyrene Benzo(b&j)fluoranthene Benzo(g.h.i)perylene	\$24-De0058968 \$24-De0058968 \$24-De0058968 \$24-De0058968 \$24-De0058968 \$24-De0058968 \$24-De0058968	CP CP CP CP CP	mg/kg mg/kg mg/kg mg/kg mg/kg	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass	
Polycyclic Aromatic Hydrocar Acenaphthene Acenaphthylene Anthracene Benz(a)anthracene Benzo(a)pyrene Benzo(b&j)fluoranthene Benzo(g.h.i)perylene Benzo(k)fluoranthene	\$24-De0058968 \$24-De0058968 \$24-De0058968 \$24-De0058968 \$24-De0058968 \$24-De0058968 \$24-De0058968 \$24-De0058968	CP CP CP CP CP CP	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	
Polycyclic Aromatic Hydrocar Acenaphthene Acenaphthylene Anthracene Benz(a)anthracene Benzo(a)pyrene Benzo(b&j)fluoranthene Benzo(g.h.i)perylene Benzo(k)fluoranthene Chrysene	\$24-De0058968 \$24-De0058968 \$24-De0058968 \$24-De0058968 \$24-De0058968 \$24-De0058968 \$24-De0058968 \$24-De0058968 \$24-De0058968	CP CP CP CP CP CP CP CP	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	30% 30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	
Polycyclic Aromatic Hydrocar Acenaphthene Acenaphthylene Anthracene Benz(a)anthracene Benzo(a)pyrene Benzo(b&j)fluoranthene Benzo(g.h.i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a.h)anthracene	\$24-De0058968 \$24-De0058968 \$24-De0058968 \$24-De0058968 \$24-De0058968 \$24-De0058968 \$24-De0058968 \$24-De0058968 \$24-De0058968 \$24-De0058968	CP CP CP CP CP CP CP CP CP	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	30% 30% 30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	
Polycyclic Aromatic Hydrocar Acenaphthene Acenaphthylene Anthracene Benz(a)anthracene Benzo(a)pyrene Benzo(b&j)fluoranthene Benzo(g.h.i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a.h)anthracene Fluoranthene	\$24-De0058968 \$24-De0058968 \$24-De0058968 \$24-De0058968 \$24-De0058968 \$24-De0058968 \$24-De0058968 \$24-De0058968 \$24-De0058968 \$24-De0058968 \$24-De0058968	CP	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	< 0.5 < 0.5	< 0.5 < 0.5	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	30% 30% 30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	
Polycyclic Aromatic Hydrocar Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(b&j)fluoranthene Benzo(g.h.i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a.h)anthracene Fluorene	\$24-De0058968 \$24-De0058968 \$24-De0058968 \$24-De0058968 \$24-De0058968 \$24-De0058968 \$24-De0058968 \$24-De0058968 \$24-De0058968 \$24-De0058968 \$24-De0058968 \$24-De0058968	CP	mg/kg	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	30% 30% 30% 30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	
Polycyclic Aromatic Hydrocar Acenaphthene Acenaphthylene Anthracene Benz(a)anthracene Benzo(a)pyrene Benzo(b&j)fluoranthene Benzo(g.h.i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a.h)anthracene Fluoranthene Fluorene Indeno(1.2.3-cd)pyrene	\$24-De0058968 \$24-De0058968 \$24-De0058968 \$24-De0058968 \$24-De0058968 \$24-De0058968 \$24-De0058968 \$24-De0058968 \$24-De0058968 \$24-De0058968 \$24-De0058968 \$24-De0058968 \$24-De0058968	CP	mg/kg	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	30% 30% 30% 30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	
Polycyclic Aromatic Hydrocar Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(b&j)fluoranthene Benzo(g.h.i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a.h)anthracene Fluorene	\$24-De0058968 \$24-De0058968 \$24-De0058968 \$24-De0058968 \$24-De0058968 \$24-De0058968 \$24-De0058968 \$24-De0058968 \$24-De0058968 \$24-De0058968 \$24-De0058968 \$24-De0058968	CP	mg/kg	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	30% 30% 30% 30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	

Duplicate									
Organochlorine Pesticides				Result 1	Result 2	RPD			
Chlordanes - Total	S24-De0058968	СР	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
4.4'-DDD	S24-De0058968	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDE	S24-De0058968	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDT	S24-De0058968	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Aldrin	S24-De0058968	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
b-HCH	S24-De0058968	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
d-HCH	S24-De0058968	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Dieldrin	S24-De0058968	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan I	S24-De0058968	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan II	S24-De0058968	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan sulphate	S24-De0058968	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin	S24-De0058968	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin aldehyde	S24-De0058968	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin ketone	S24-De0058968	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor	S24-De0058968	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor epoxide	S24-De0058968	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Hexachlorobenzene	S24-De0058968	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Methoxychlor	S24-De0058968	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Toxaphene	S24-De0058968	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate									
Polychlorinated Biphenyls				Result 1	Result 2	RPD			
Aroclor-1016	S24-De0058968	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1221	S24-De0058968	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1232	S24-De0058968	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1242	S24-De0058968	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1248	S24-De0058968	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1254	S24-De0058968	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1260	S24-De0058968	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Total PCB*	S24-De0058968	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	

Comments

Sample Integrity

Custody Seals Intact (if used) N/A Attempt to Chill was evident Yes Sample correctly preserved Yes Appropriate sample containers have been used Yes Sample containers for volatile analysis received with minimal headspace Yes Samples received within HoldingTime Yes Some samples have been subcontracted No

Qualifier Codes/Comments

Code Description

F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).

N01

Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.

F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes. N04

Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs N07 Q09 The Surrogate recovery is outside of the recommended acceptance criteria due to matrix interference. Acceptance criteria were met for all other QC

The RPD reported passes Eurofins Environment Testing's QC - Acceptance Criteria as defined in the Internal Quality Control Review and Glossary page of this report. Q15

Authorised by:

N02

Andrew Black Analytical Services Manager Mickael Ros Senior Analyst-Metal Saveed Abu Senior Analyst-Asbestos Ryan Phillips Senior Analyst-Sample Properties

Raymond Siu Senior Analyst-Organic Raymond Siu Senior Analyst-Volatile Roopesh Rangarajan Senior Analyst-Organic

Glenn Jackson **Managing Director**

Final Report - this report replaces any previously issued Report

- Indicates Not Requested

* Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Report Number: 1174208-S

RE: Eurofins Sample Receipt Advice - Report 1174208 : Site MATRAVILLE (MATRAVILLE)

From Milad Noujaim <mnoujaim@jbsg.com.au>

Date Mon 06/01/2025 12:14 PM

To EET-ELVIS@eurofinsanz.com <EET-ELVIS@eurofinsanz.com>

Cc Finn Billyard-Currey <fbillyardcurrey@jbsg.com.au>; Andrew Black <Andrew.Black@eurofinsanz.com>

Unverified Sender: The sender of this email has not been verified. Review the content of the message carefully and verify the identity of the sender before acting on this email: replying, opening attachments or clicking links.

Hi Team,

Can we get the following analysis conducted:

- TP09 0-0.2 for asbestos NEPM
- Extra TP21_0.4-0.5 log as TP21_0-0.5 and analyse for asbestos NEPM
- Extra TP18_0-0.3 log as TP19_0-0.5 and analyse for asbestos NEPM

All asbestos analysis are NEPM/WA

Kind Regards,

Milad Noujaim | Senior Environmental Consultant | JBS&G Gadigal Country | Level 8, 179 Elizabeth Street, Sydney, NSW

T: 02 8245 0300 | M: 0401 230 032 | E: mnoujaim@jbsg.com.au | W: jbsg.com.au | L: Conditions and Limitations

Exceptional Outcomes

From: Finn Billyard-Currey <fbillyardcurrey@jbsg.com.au>

Sent: Monday, 6 January 2025 9:31 AM

To: Milad Noujaim < mnoujaim@jbsg.com.au>

Subject: Fw: Eurofins Sample Receipt Advice - Report 1174208 : Site MATRAVILLE (MATRAVILLE)

From: Finn Billyard-Currey < fbillyardcurrey@jbsg.com.au>

Sent: Monday, January 6, 2025 9:30:26 am

To: EnviroSampleNSW@eurofinsanz.com < EnviroSampleNSW@eurofinsanz.com >

Subject: Re: Eurofins Sample Receipt Advice - Report 1174208 : Site MATRAVILLE (MATRAVILLE)

Could we get TP21 0.4-0.5 analysed for asbestos please? Thank you.

From: George Lewis < EET-ELVIS@eurofinsanz.com>

Sent: Friday, December 27, 2024 1:40:08 PM

To: Finn Billyard-Currey < fbillyardcurrey@jbsg.com.au>

Cc: JBSG Labresults < jbsglabresults@jbsg.com.au>; S&G Labresults < labresults@jbsg.com.au> **Subject:** Eurofins Sample Receipt Advice - Report 1174208 : Site MATRAVILLE (MATRAVILLE)

[EXTERNAL EMAIL] Stop and think before opening attachments, clicking or responding.

Dear Valued Client,

Please be advised that over the holiday period, the standard TAT has been extended. Results for samples received after the 13th of December will be reported in January 2025. Please contact our ASM team if you have any questions. Bag are not provided for samples TP09_0.0-0.1, TP19_0-0.5, TP21_0-0.5, AsbWA analysis cancelled, please advise if As4964 testing was intended in the COC. Bag are not received for sample TP11_0-0.1, however Jar is available for sample TP11_0-0.1.

TP09_0-0.2, TP11_0-0.2 received bag as extra, not in COC, logged on hold, please advise for analysis.

TP21_0.4-0.5 bag received as extra with sample. TP18_0.0-0.3 received bag as extra logged on hold, please advise for analysis if any.

Please find attached a Sample Receipt Advice (SRA), a Summary Sheet and a scanned copy of your Chain-of-Custody (COC). It is important that you check this documentation to ensure that the details are correct such as the Client Job Number, Turn Around Time, any comments in the Notes section and sample numbers as well as the requested analysis. If there are any irregularities then please contact your Eurofins Analytical Services Manager as soon as possible to make certain that they get changed.

Kind Regards George Lewis

<u>EnviroNote 1117 - Urban Runoff Mortality Syndrome 6-PPD quinone & HMMM EnviroNote 1115 - Eurofins SYDNEY Laboratory is now NATA accredited for PFAS</u>

View our latest EnviroNotes

Eurofins Environment Testing Australia Pty Ltd

NZBN: 9429046024954 ABN: 50 005 085 521 ABN: 91 05 0159 898

Melbourne Newcastle Auckland Auckland (Focus) Christchurch Geelong Canberra Brisbane Perth Tauranga 6 Monterey Road 19/8 Lewalan Street 179 Magowar Road Unit 1.2 Dacre Street 1/21 Smallwood Place 1/2 Frost Drive 46-48 Banksia Road 35 O'Rorke Road Unit C1/4 Pacific Rise 43 Detroit Drive 1277 Cameron Road Dandenong South Mayfield West Welshpool Mount Wellington, Rolleston, Gate Pa, Grovedale Girraween Mitchell Murarrie Penrose, VIC 3175 VIC 3216 NSW 2145 ACT 2911 OLD 4172 NSW 2304 WA 6106 Auckland 1061 Auckland 1061 Christchurch 7675 Tauranga 3112 +61 3 8564 5000 +61 3 8564 5000 +61 2 9900 8400 +61 2 6113 8091 T: +61 7 3902 4600 +61 2 4968 8448 +61 8 6253 4444 +64 9 526 4551 +64 9 525 0568 +64 3 343 5201 +64 9 525 0568 NATA# 1261 NATA# 1261 NATA# 1261 NATA# 1261 NATA# 1261 NATA# 1261 NATA# 2377 IANZ# 1327 IANZ# 1308 IANZ# 1290 IANZ# 1402 Site# 20794 & 2780 Site# 2370 & 2554 Site# 1254 Site# 25466 Site# 25079 Site# 25403 Site# 18217

Sample Receipt Advice

Company name: JBS & G Australia (NSW) P/L Finn Billyard-Currey
ADDITIONAL: MATRAVILLE Contact name: Project name: MATRAVILLE Project ID:

Turnaround time:

5 Day Jan 6, 2025 12:48 PM Date/Time received

1175676 **Eurofins reference**

Sample Information

A detailed list of analytes logged into our LIMS, is included in the attached summary table.

Sample Temperature of chilled sample on the batch as recorded by Eurofins Sample Receipt: 13.8 degrees

All samples have been received as described on the above COC.

COC has been completed correctly.

Attempt to chill was evident.

Appropriately preserved sample containers have been used.

All samples were received in good condition.

Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.

Appropriate sample containers have been used.

Sample containers for volatile analysis received with zero headspace.

Split sample sent to requested external lab.

Some samples have been subcontracted. X

N/A Custody Seals intact (if used).

Notes

Contact

If you have any questions with respect to these samples, please contact your Analytical Services Manager:

Andrew Black on phone: (+61) 2 9900 8490 or by email: Andrew.Black@eurofinsanz.com

Results will be delivered electronically via email to Finn Billyard-Currey - fbillyardcurrey@jbsg.com.au.

		Eurofins Environment Test	ADN: 60 000 000 000
4			

ting Australia Pty Ltd

email: EnviroSales@eurofinsanz.com 💸 eurofins web: www.eurofins.com.au

6 Monterey Road Dandenong South VIC 3175 +61 3 8564 5000 NATA# 1261 Site# 1254

JBS & G Australia (NSW) P/L Level 8, 179 Elizabeth St

Company Name: Address:

Sydney NSW 2000

ADDITIONAL: MATRAVILLE MATRAVILLE

Project Name: Project ID:

Sydney
179 Magowar Road
Girraween
NSW 2145
+61 2 9900 8400
NATA# 1261
Site# 18217 Geelong S 19/8 Lewalan Street 1 Grovedale C VIC 3264 +61 3 8564 5000 + NATA# 1261 | 1 Site# 25403 | 5

Canberra Unit 1,2 Dacre Street Mitchell ACT 2911 +61 2 6113 8091 NATA# 1261 Site# 25466

Brisbane 1/21 Smallwood Place 1/21 Smallwood Place 1/21 QLD 4172 N T: +617 3902 4600 NATA# 1261 N Site# 20794 & 2780 S

Newcastle 1/2 Frost Drive Mayfield West

Perth 46-48 Banksia Road Welshpool WA 6106 +61 8 6253 4444 NAT# 2377 Site# 2370 & 2554 Order No.: Report #: Phone: Fax: NSW 2304 +61 2 4968 8448 NATA# 1261 Site# 25079

Received: Due: Priority: Contact Name:

Jan 6, 2025 12:48 PM Jan 13, 2025 5 Day Finn Billyard-Currey

Tauranga 1277 Cameron Road, Gate Pa, Tauranga 3112 +64 9 525 0568

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 +64 3 343 5201 IANZ# 1290

Auckland (Focus)
Unit C1/4 Pacific Rise,
Mount Wellington,
Auckland 1061
+64 9 525 0568
IANZ# 1308

35 O'Rorke Road Penrose, Auckland 1061 +64 9 526 4551 IANZ# 1327

Eurofins Environment Testing NZ Ltd

Eurofins ARL Pty Ltd ABN: 91 05 0159 898

NZBN: 9429046024954

Auckland

IANZ# 1402

Eurofins Analytical Services Manager: Andrew Black

Asbestos - WA guidelines	×			×	X	X	3
			LAB ID	S25-Ja0006309	S25-Ja0006310	S25-Ja0006311	
			Matrix	Soil	Soil	Soil	
Sample Detail	Site # 18217		Sampling Time				
Sa	NATA # 1261		Sample Date	Dec 18, 2024	Dec 18, 2024	Dec 18, 2024	
	Sydney Laboratory - NATA # 1261 Site # 18217	External Laboratory	Sample ID	TP09 0-0.2	TP21_0-0.5	TP19_0-0.5	Test Counts
	Sydn	Exter	N _o	7	2	3	Test

Certificate of Analysis

JBS & G Australia (NSW) P/L Level 8, 179 Elizabeth St Sydney **NSW 2000**

Attention:

Finn Billyard-Currey

Report

1175676-AID

Project Name

ADDITIONAL: MATRAVILLE

Project ID Received Date **MATRAVILLE**

Date Reported

Jan 06, 2025 Jan 14, 2025

Methodology:

Asbestos Fibre Identification

Conducted in accordance with the Australian Standard AS 5370:2024* Sampling and qualitative identification of asbestos in bulk materials (ISO 22262-1:2012, MOD), formerly AS 4964-2004 and in-house Method LTM-ASB-8020 by polarised light microscopy (PLM) and dispersion staining (DS) techniques.

NOTE: Positive Trace Analysis results indicate the sample contains detectable respirable fibres.

Man-made vitreous fibre (MMVF)

Fibres exhibiting isotropic characteristics, including glass fibres, glass wool, rock wool, slag wool, ceramic fibres and bio-soluble fibres. NOTE: previously known as "synthetic mineral fibre" (SMF). Simple analytical procedures such as polarised light microscopy cannot detect or reliably identify asbestos in some types of commercial products containing asbestos, either because the fibres are below the resolution of optical microscopy or because the matrix material adheres too strongly to the fibres. For these types of products, electron microscopy may be necessary.

Subsampling Soil Samples

The sample submitted is dried and passed through a 10 mm sieve followed by a 2 mm sieve. All fibrous matter greater than 10 mm and greater than 2 mm and the material passing through the 2 mm sieve are retained and analysed for the presence of asbestos. If the sub 2mm fraction is greater than approximately 30 g to 60 g, then a subsampling routine based on ISO 3082:2017(E) is employed.

NOTE: Depending on the nature and size of the soil sample, the sub-2 mm residue material may need to be subsampled for trace analysis, in accordance with AS 5370:2024*.

Bonded asbestoscontaining material (ACM)

The material is first examined, and any fibres are isolated for identification by PLM and DS. Where required, interfering matrices may be removed by disintegration using a range of heat, chemical or physical treatments, possibly in combination. The resultant material is then further examined in accordance with AS 5370:2024*. NOTE: Even after disintegration, it may be difficult to detect the presence of asbestos in some asbestos-containing bulk materials using PLM and DS. This is due to the low grade or small length or diameter of the asbestos fibres present in the material or to the fact that very fine fibres have been distributed intimately throughout the materials. Vinyl/asbestos

floor tiles, some asbestos-containing sealants and mastics, asbestos-containing epoxy resins and some oré samples are examples of these types of material, which are difficult to analyse.

Limit of Reporting (LOR)

Date Reported: Jan 14, 2025

The performance limitation of the AS 5370:2024* method for non-homogeneous samples is around 0.1 g/kg (equivalent to 0.01% (w/w)). Where no asbestos is found by PLM and DS, including Trace Analysis, this is considered to be at the nominal reporting limit of 0.01% (w/w). The NEPM screening level of 0.001% (w/w) is intended as an on-site nominal reporting limit of 0.01% (w/w). The NEPM screening level of 0.001% (w/w) is intended as an on-site determination, not a laboratory limit of reporting, per se. Examination of large sample size (e.g., 500 mL) may improve the likelihood of detecting asbestos, particularly AF, to aid assessment against the NEPM criteria. Gravimetric determinations to this level of accuracy are outside of AS 5370:2024*, and hence, NATA Accreditation does not cover the performance of this service (non-NATA results are shown with an asterisk).

NOTE: NATA News March 2014, p.7, states in relation to AS 4964-2004: "This is a qualitative method with a nominal reporting limit of 0.01%" and that currently in Australia "there is no validated method available for the quantification of spherica." This report is experience with the application procedures and reporting in the NEPM and the second content of the production of the NEPM and the second content in the NEPM and the negative and reporting in the NEPM and the negative and reporting in the NEPM and the negative content in the Nepment in the NEPM and the negative content in the Nepment in the Nepme

asbestos". WA DoH. This report is consistent with the analytical procedures and reporting recommendations in the NEPM and the

Eurofins Environment Testing 179 Magowar Road, Girraween NSW, Australia, 2145

Page 1 of 6 Report Number: 1175676-AID

ADDITIONAL: MATRAVILLE MATRAVILLE **Project Name** Project ID

Dec 18, 2024

Date Sampled

Report

1175676-AID

Client Sample ID	Eurofins Sample No.	Date Sampled	Sample Description	Result
TP09 0-0.2	25-Ja0006309	Dec 18, 2024	Approximate Sample 829g Sample consisted of: Brown coarse-grained sandy soil, cement, plant Organic fibre detected. residue and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No trace asbestos detected.
TP21_0-0.5	25-Ja0006310	Dec 18, 2024	Approximate Sample 965g Sample consisted of: Brown coarse-grained sandy soil, glass, cement Organic fibre detected, and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No trace asbestos detected.
TP19_0-0.5	25-Ja0006311	Dec 18, 2024	Approximate Sample 795g Sample consisted of: Brown coarse-grained sandy soil, cement, plant Organic fibre detected. residue and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No trace asbestos detected.

Page 2 of 6

Report Number: 1175676-AID

Sample History

Date Reported: Jan 14, 2025

Where samples are submitted/analysed over several days, the last date of extraction is reported.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

DescriptionTesting SiteExtractedHolding TimeAsbestos - LTM-ASB-8020SydneyJan 08, 2025Indefinite

Eurofins Environment Testing 179 Magowar Road, Girraween NSW, Australia, 2145 ABN : 50 005 085 521 Telephone: +61 2 9900 8400 Page 3 of 6

Report Number: 1175676-AID

ABN: 50 005 085 521

Melbourne G 6 Monterey Road Dandenong South VIC 3175 +61 3 8564 5000 NATA# 1261 Site# 1254

Sydney
179 Magowar Road
Girraween
NSW 2145
+61 2 9900 8400
NATA# 1261
Site# 18217 Geelong Street 19/8 Lewalan Street 19/8 Lewalan Crovedale (Crovedale 13 864 5000 NATA# 1261 Stre# 25403

JBS & G Australia (NSW) P/L Level 8, 179 Elizabeth St

Company Name: Address:

email: EnviroSales@eurofinsanz.com

web: www.eurofins.com.au

Sydney NSW 2000

ADDITIONAL: MATRAVILLE MATRAVILLE

Project Name: Project ID:

Newcastle 1/2 Frost Drive Mayfield West NATA# 1261 Site# 25079 Brisbane 1/21 Smallwood Place QLD 4172 T: +61 7 3902 4600 NATA# 1261 Site# 20794 & 2780 Murarrie Canberra Unit 1,2 Dacre Street Mitchell ACT 2911 +61 2 6113 8091 NATA# 1261 Site# 25466

Perth 46-48 Banksia Road Welshpool WA 6106 +61 8 6253 4444 NATA# 2377 Site# 2370 & 2554 Order No.: Report #: Phone: Fax: NSW 2304 +61 2 4968 8448

Tauranga 1277 Cameron Road, Gate Pa, Tauranga 3112 +64 9 525 0568

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 +64 3 343 5201 IANZ# 1290

Auckland (Focus) Unit C1/4 Pacific Rise, Mount Wellington, Auckland 1061 +64 9 525 0568

IANZ# 1308

Eurofins Environment Testing NZ Ltd

Eurofins ARL Pty Ltd

NZBN: 9429046024954 35 O'Rorke Road

Auckland

IANZ# 1402

Penrose, Auckland 1061 +64 9 526 4551 IANZ# 1327

Received: Due: Priority: Contact Name:

Jan 6, 2025 12:48 PM Jan 13, 2025 5 Day Finn Billyard-Currey

Eurofins Analytical Services Manager: Andrew Black

As

sbestos - WA guidelines	×			×	×	×	3	
			LAB ID	S25-Ja0006309	S25-Ja0006310	S25-Ja0006311		
			Matrix	Soil	Soil	Soil		
Sample Detail	Site # 18217		Sampling Time					
S.	Sydney Laboratory - NATA # 1261 Site # 18217	,	Sample Date	Dec 18, 2024	Dec 18, 2024	Dec 18, 2024		
	ley Laboratory	External Laboratory	Sample ID	TP09 0-0.2	TP21_0-0.5	TP19_0-0.5	Test Counts	
	Sydr	Exte	No	1	2	3	Test	

Internal Quality Control Review and Glossary General

- QC data may be available on request. All soil results are reported on a dry basis, unless otherwise stated.
- Samples were analysed on an 'as received' basis
- Information identified on this report with the colour blue indicates data provided by customer that may have an impact on the results
- This report replaces any interim results previously issued

Holding Times

Please refer to the most recent version of the 'Sample Preservation and Container Guide' for holding times (QS3001).

Units

Percentage weight-for-weight basis, e.g. of asbestos in asbestos-containing finds in soil samples (% w/w) Airborne fibre filter loading as Fibres (N) per Fields counted (n)
Airborne fibre reported concentration as Fibres per millilitre of air drawn over the sampler membrane (C) % w/w:

F/fld

F/mL

g, kg Mass, e.g. of whole sample (M) or asbestos-containing find within the sample (m)

Concentration in grams per kilogram g/kg

Volume, e.g. of air as measured in AFM ($V = r \times t$) L. mL

Airborne fibre sampling Flowrate as litres per minute of air drawn over the sampler membrane (r) Time (t), e.g. of air sample collection period L/min

min

Calculations

 $C = \left(\frac{A}{a}\right) \times \left(\frac{N}{n}\right) \times \left(\frac{1}{r}\right) \times \left(\frac{1}{t}\right) = K \times \left(\frac{N}{n}\right) \times \left(\frac{1}{V}\right)$ Airborne Fibre Concentration:

Asbestos Content (as asbestos): $\% w/w = \frac{(m \times P_A)}{M}$ Weighted Average (of asbestos): $\%_{WA} = \sum_{r} \frac{(m \times P_A)_x}{r}$

Terms

COC

PCM

Weighted Average

Estimated percentage of asbestos in a given matrix may be derived from knowledge or experience of the material, informed by HSG264 Appendix 2, else %asbestos

assumed to be 15% in accordance with WA DOH Appendix 2 (PA). This estimate is not NATA-accredited

Asbestos Containing Materials. Asbestos contained within a non-asbestos matrix, typically presented in bonded (non-friable) condition. For the purposes of the ACM

NEPM and WA DOH, ACM corresponds to material larger than 7 mm x 7 mm.

ΑF Asbestos Fines. Asbestos contamination within a soil sample, as defined by WA DOH. Includes loose fibre bundles and small pieces of friable and non-friable

material such as asbestos cement fragments mixed with soil. Considered under the NEPM as equivalent to "non-bonded / friable"

AFM Airborne Fibre Monitoring, e.g., by the MFM.

Amosite Asbestos Detected. Amosite may also refer to Fibrous Grunerite or Brown Asbestos. Identified in accordance with AS 5370:2024* Sampling and qualitative identification of asbestos in bulk materials (ISO 22262-1:2012, MOD), formerly AS 4964-2004. Amosite

AS

Asbestos Content (as asbestos) Total %w/w asbestos content in asbestos-containing finds in a soil sample (% w/w).

Chrysotile Asbestos Detected. Chrysotile may also refer to Fibrous Serpentine or White Asbestos. Identified in accordance with AS 5370:2024* Sampling and qualitative identification of asbestos in bulk materials (ISO 22262-1:2012, MOD), formerly AS 4964-2004.. Chrysotile

Chain of Custody

Crocidolite

Crocidolite Asbestos Detected. Crocidolite may also refer to Fibrous Riebeckite or Blue Asbestos. Identified in accordance with AS 5370:2024* Sampling and

qualitative identification of asbestos in bulk materials (ISO 22262-1:2012, MOD), formerly AS 4964-2004..

Dry Sample is dried by heating prior to analysis.

DS Dispersion Staining. Technique required for unequivocal Identification of asbestos fibres by PLM.

Fibrous Asbestos. Asbestos-containing material that is wholly or in part friable, including materials with higher asbestos content with a propensity to become FΑ

friable with handling, and any material that was previously non-friable and in a severely degraded condition. For the purposes of the NEPM and WA DOH, FA generally corresponds to material larger than 7 mm x 7 mm, although FA may be more difficult to distinguish visibly and may be assessed as AF.

Fibre Count Total of all fibres (whether asbestos or not) meeting the counting criteria set out in the NOHSC:3003

Fibre Identification. Unequivocal identification of asbestos fibres according to AS 5370:2024* Sampling and qualitative identification of asbestos in bulk materials Fibre ID

(ISO 22262-1:2012, MOD), formerly AS 4964-2004. Includes Chrysotile, Amosite (Grunerite) or Crocidolite asbestos

Asbestos-containing materials of any size that may be broken or crumbled by hand pressure. For the purposes of the NEPM, this includes both AF and FA. It is Friable

outside of the laboratory's remit to assess the degree of friability

HSG248 UK HSE HSG248, Asbestos: The Analysts Guide, 2nd Edition (2021), ISBN: 9780616667079.

HSG264 UK HSE HSG264, Asbestos: The Survey Guide (2012), .ISBN: 9780717665020

ISO (also ISO/IEC) International Organization for Standardization / International Electrotechnical Commission.

Microscope constant (K) as derived from the effective filter area of the given AFM membrane used for collecting the sample (A) and the projected eyepiece K Factor

graticule area of the specific microscope used for the analysis (a).

LOR

MFM (also NOHSC:3003) Membrane Filter Method. As described by the Australian Government National Occupational Health and Safety Commission, Guidance Note on the Membrane

Filter Method for Estimating Airborne Asbestos Fibres, 2nd Edition [NOHSC:3003(2005)].

Man-Made Vitreous Fibre - exhibiting isotropic characteristics, including glass fibres, glass wool, rock wool, slag wool, ceramic fibres and "bio-soluble fibres. MMVF

NOTE: previously known as "synthetic mineral fibre" (SMF).

NEPM (also ASC NEPM) National Environment Protection (Assessment of Site Contamination) Measure, (2013, as amended)

Organic Fibres Detected. Organic may refer to Natural or Man-Made Polymeric Fibres. Identified in accordance with AS 5370:2024* Sampling and qualitative identification of asbestos in bulk materials (ISO 22262-1:2012, MOD), formerly AS 4964-2004.. Organic

Phase Contrast Microscopy. This is used for fibre counting according to the MFM.

Polarised Light Microscopy. As used for Fibre Identification and Trace Analysis according to AS 5370:2024* Sampling and qualitative identification of asbestos in bulk materials (ISO 22262-1:2012, MOD), formerly AS 4964-2004.. PLM

Sampling Unless otherwise stated, Eurofins are not responsible for sampling equipment or the sampling process. SRA Sample Receipt Advice

An analytical procedure is used to detect the presence of respirable fibres (particularly asbestos) in a given sample matrix. Trace Analysis

UK HSE HSG United Kingdom, Health and Safety Executive, Health and Safety Guidance, publication.

UMF Unidentified Mineral Fibre Detected. Fibrous minerals that are detected but have not been unequivocally identified by PLM with DS according to AS 5370:2024*

Sampling and qualitative identification of asbestos in bulk materials (ISO 22262-1:2012, MOD), formerly AS 4964-2004.. It may include (but is not limited to)

actinolite, anthophyllite, or tremolite asbestos.

WA DOH Reference document for the NEPM. Government of Western Australia, Guidelines for the Assessment, Remediation and Management of Asbestos-Contaminated Sites in Western Australia (updated 2021), including Appendix Four: Laboratory analysis

Combined average %w/w asbestos content of all asbestos-containing finds in the given aliquot or total soil sample (%wA)

Eurofins Environment Testing 179 Magowar Road, Girraween NSW, Australia, 2145 Page 5 of 6 Date Reported: Jan 14, 2025 ABN: 50 005 085 521 Telephone: +61 2 9900 8400 Report Number: 1175676-AID

Comments

Sample Integrity

Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Asbestos Counter/Identifier:

Chamath JHM Annakkage Senior Analyst-Asbestos

Authorised by:

Sayeed Abu Senior Analyst-Asbestos

Glenn Jackson Managing Director

Final Report - this report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Report Number: 1175676-AID

Chain of Custody

PROJECT NO.: 67400	andi				SAMPLERS: F. TON BC	NTCH NO.	al-lanter
DATE NEEDED BY: S'+Q'7	AT		1		QC LEVEL: NEPM (2013)		
PHONE: Sydney 02 8245 C	0300 Perth 08 94	488 0100	Brisba	PHONE: Sydney 02 8245 0300 Perth 08 9488 0100 Brisbane 07 3112 2688 Melbourne 03 9642 0599 Adelaide 08 8431 7113	9642 0599 Adelaide 0	8 8431 7113	
SEND REPORT & INVOICE TO	 (1) adminnsw@jb 	sg.com.a	u; (2) JJ	SCF. Levin CS. WAS. @jbsg.com.au; (3) KU MYCHUMES	@jpsg.com.au	
COMMENTS / SPECIAL HANDLING / STORAGE OR DISPOSAL:	STORAGE OR DISPOSAL:				Ą	X	ASBESTIOS ANALYSIS
					90gw 504936 M		IFICATION AWA
SAMPLEID	MATRIX	DATE	TIME	TYPE & PRESERVATIVE	10) SH WW.		DEEN NOTES:
Q.40/	50-67 1	11/12		3+B 7CP	X		X
13,402	>	>		A 4	×		X
							100/100 100 100 100 100 100 100 100 100
*							200
							JOD ND: SGOSIO
							313 Fd Capping 9/12 /201
						6	10 10 10 10 10 10 10 10 10 10 10 10 10 1
							Sedaned By: O
							Coling (MD) consent
							Security International
RELINQUISHED BY:	D BY:			METHOD OF SHIPMENT:	RECE	RECEIVED BY:	FOR RECEIVING IAB USE ONLY:
NAME: PLOUS DATE:	51/bl	25-27	CONSIGNMENT NOTE NO. TRANSPORT CO.	JOTE NO.	DATE: (9/17/14)	die 1630	COOLER TEMP & deg C
NAME: DATE:		CONS	CONSIGNMENT NOTE NO.	VOTE NO.	NAME: OF:	DATE:	COOLER SEAL—Yes No Intact Broken
Container & Preservative Codes: P.	= Plactic = Soll lar: B = C	Glass Bottle	N= Nitrie Ac	id Proud. C = Sodium Hydraxide Prsvd: VC = Hy	drochloric Acid Prsvd Vial: VS = Sul	Huric Acid Prsvd Vial: S = Su	Or. Constance & Presentative Codes: P = Plastic - I = Soil Jan. B = Gloss Bottle: No Nitric Acid Provid: C = Sodium Hydroxide Provid: VS = Sulfuric Acid Provid: S = Sulfuri

Controlled Copy (June 2015) © 2011-2019 JBS&G Australia Ptv Ltd

Envirolab Services Pty Ltd
ABN 37 112 535 645
12 Ashley St Chatswood NSW 2067
ph 02 9910 6200 fax 02 9910 6201
customerservice@envirolab.com.au
www.envirolab.com.au

CERTIFICATE OF ANALYSIS 369516

Client Details	
Client	JBS & G (NSW & WA) Pty Ltd
Attention	F Billyard-Currey
Address	Level 8, 179 Elizabeth St, Sydney, NSW, 2000

Sample Details	
Your Reference	<u>68409</u>
Number of Samples	2 Soil
Date samples received	19/12/2024
Date completed instructions received	19/12/2024

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details		
Date results requested by	03/01/2025	
Date of Issue	31/12/2024	
NATA Accreditation Number 2901	. This document shall not be reproduced except in full.	
Accredited for compliance with ISO	D/IEC 17025 - Testing. Tests not covered by NATA are denoted with *	

Asbestos Approved By

Analysed by Asbestos Approved Analyst: Nyovan Moonean Authorised by Asbestos Approved Signatory: Stuart Chen

Results Approved By

Liam Timmins, Organics Supervisor Stuart Chen, Asbestos Approved Identifier/Report coordinator Tabitha Roberts, Senior Chemist Timothy Toll, Senior Chemist

Authorised By

Nancy Zhang, Laboratory Manager

vTRH(C6-C10)/BTEXN in Soil		
Our Reference		369516-1
Your Reference	UNITS	QA01
Date Sampled		18/12/2024
Type of sample		Soil
Date extracted	-	20/12/2024
Date analysed	-	20/12/2024
TRH C ₆ - C ₉	mg/kg	<25
TRH C ₆ - C ₁₀	mg/kg	<25
vTRH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25
Benzene	mg/kg	<0.2
Toluene	mg/kg	<0.5
Ethylbenzene	mg/kg	<1
m+p-xylene	mg/kg	<2
o-Xylene	mg/kg	<1
Naphthalene	mg/kg	<1
Total +ve Xylenes	mg/kg	<1
Surrogate aaa-Trifluorotoluene	%	114

svTRH (C10-C40) in Soil		
Our Reference		369516-1
Your Reference	UNITS	QA01
Date Sampled		18/12/2024
Type of sample		Soil
Date extracted	-	20/12/2024
Date analysed	-	23/12/2024
TRH C ₁₀ - C ₁₄	mg/kg	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100
Total +ve TRH (C10-C36)	mg/kg	<50
TRH >C ₁₀ -C ₁₆	mg/kg	<50
TRH >C ₁₀ -C ₁₆ less Naphthalene (F2)	mg/kg	<50
TRH >C ₁₆ -C ₃₄	mg/kg	<100
TRH >C ₃₄ -C ₄₀	mg/kg	<100
Total +ve TRH (>C10-C40)	mg/kg	<50
Surrogate o-Terphenyl	%	92

PAHs in Soil		
Our Reference		369516-1
Your Reference	UNITS	QA01
Date Sampled		18/12/2024
Type of sample		Soil
Date extracted	-	20/12/2024
Date analysed	-	23/12/2024
Naphthalene	mg/kg	<0.1
Acenaphthylene	mg/kg	<0.1
Acenaphthene	mg/kg	<0.1
Fluorene	mg/kg	<0.1
Phenanthrene	mg/kg	<0.1
Anthracene	mg/kg	<0.1
Fluoranthene	mg/kg	<0.1
Pyrene	mg/kg	<0.1
Benzo(a)anthracene	mg/kg	<0.1
Chrysene	mg/kg	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2
Benzo(a)pyrene	mg/kg	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1
Total +ve PAH's	mg/kg	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5
Surrogate p-Terphenyl-d14	%	84

Organochlorine Pesticides in soil		
Our Reference		369516-1
Your Reference	UNITS	QA01
Date Sampled		18/12/2024
Type of sample		Soil
Date extracted	-	20/12/2024
Date analysed	-	23/12/2024
alpha-BHC	mg/kg	<0.1
нсв	mg/kg	<0.1
beta-BHC	mg/kg	<0.1
gamma-BHC	mg/kg	<0.1
Heptachlor	mg/kg	<0.1
delta-BHC	mg/kg	<0.1
Aldrin	mg/kg	<0.1
Heptachlor Epoxide	mg/kg	<0.1
gamma-Chlordane	mg/kg	<0.1
alpha-chlordane	mg/kg	<0.1
Endosulfan I	mg/kg	<0.1
pp-DDE	mg/kg	<0.1
Dieldrin	mg/kg	<0.1
Endrin	mg/kg	<0.1
Endosulfan II	mg/kg	<0.1
pp-DDD	mg/kg	<0.1
Endrin Aldehyde	mg/kg	<0.1
pp-DDT	mg/kg	<0.1
Endosulfan Sulphate	mg/kg	<0.1
Methoxychlor	mg/kg	<0.1
Mirex	mg/kg	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1
Total Positive Aldrin+Dieldrin	mg/kg	<0.1
Surrogate 4-Chloro-3-NBTF	%	82

PCBs in Soil		
Our Reference		369516-1
Your Reference	UNITS	QA01
Date Sampled		18/12/2024
Type of sample		Soil
Date extracted	-	20/12/2024
Date analysed	-	23/12/2024
Aroclor 1016	mg/kg	<0.1
Aroclor 1221	mg/kg	<0.1
Aroclor 1232	mg/kg	<0.1
Aroclor 1242	mg/kg	<0.1
Aroclor 1248	mg/kg	<0.1
Aroclor 1254	mg/kg	<0.1
Aroclor 1260	mg/kg	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1
Surrogate 2-Fluorobiphenyl	%	75

Acid Extractable metals in soil						
Our Reference		369516-1				
Your Reference	UNITS	QA01				
Date Sampled		18/12/2024				
Type of sample		Soil				
Date prepared	-	20/12/2024				
Date analysed	-	23/12/2024				
Arsenic	mg/kg	<4				
Cadmium	mg/kg	<0.4				
Chromium	mg/kg	9				
Copper	mg/kg	9				
Lead	mg/kg	8				
Mercury	mg/kg	<0.1				
Nickel	mg/kg	11				
Zinc	mg/kg	25				

Moisture		
Our Reference		369516-1
Your Reference	UNITS	QA01
Date Sampled		18/12/2024
Type of sample		Soil
Date prepared	-	20/12/2024
Date analysed	-	23/12/2024
Moisture	%	1.2

Asbestos ID - soils NEPM - ASB-001			
Our Reference		369516-1	369516-2
Your Reference	UNITS	QA01	QA02
Date Sampled		18/12/2024	18/12/2024
Type of sample		Soil	Soil
Date analysed	-	30/12/2024	30/12/2024
Sample mass tested	g	848.59	884.19
Sample Description	-	Brown sandy soil & rocks	Brown sandy soil & rocks
Asbestos ID in soil (AS4964) >0.1g/kg	-	No asbestos detected at reporting limit of 0.1g/kg	No asbestos detected at reporting limit of 0.1g/kg
		Organic fibres detected	Organic fibres detected
Trace Analysis	-	No asbestos detected	No asbestos detected
Total Asbestos ^{#1}	g/kg	<0.1	<0.1
Asbestos ID in soil <0.1g/kg*	-	No visible asbestos detected	No visible asbestos detected
ACM >7mm Estimation*	g	_	_
FA and AF Estimation*	g	_	_
ACM >7mm Estimation*	%(w/w)	<0.01	<0.01
FA and AF Estimation*#2	%(w/w)	<0.001	<0.001
Asbestos comments	-	Nil	Nil

Method ID	Methodology Summary
ASB-001	Asbestos ID - Qualitative identification of asbestos in bulk samples using Polarised Light Microscopy and Dispersion Staining Techniques including Synthetic Mineral Fibre and Organic Fibre as per Australian Standard 4964-2004.
ASB-001	Asbestos ID - Identification of asbestos in soil samples using Polarised Light Microscopy and Dispersion Staining Techniques. Minimum 500mL soil sample was analysed as recommended by "National Environment Protection (Assessment of site contamination) Measure, Schedule B1 and "The Guidelines from the Assessment, Remediation and Management of Asbestos-Contaminated Sites in Western Australia - May 2009" with a reporting limit of 0.1g/kg (0.01% w/w) as per Australian Standard AS4964-2004. Results reported denoted with * are outside our scope of NATA accreditation.
	NOTE*1 Total Asbestos g/kg was analysed and reported as per Australian Standard AS4964 (This is the sum of ACM >7mm, <7mm and FA/AF relative to the sample mass tested)
	NOTE ^{#2} The screening level of 0,001% w/w asbestos in soil for FA and AF only applies where the FA and AF are able to be quantified by gravimetric procedures. This screening level is not applicable to free fibres.
	Estimation = Estimated asbestos weight
	Results reported with "" is equivalent to no visible asbestos identified using Polarised Light microscopy and Dispersion Staining Techniques.
Inorg-008	Moisture content determined by heating at 105+/-5 °C for a minimum of 12 hours.
Metals-020	Determination of various metals by ICP-AES.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.

Method ID	Methodology Summary
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
	Note, the Total +ve TRH PQL is reflective of the lowest individual PQL and is therefore "Total +ve TRH" is simply a sum of the positive individual TRH fractions (>C10-C40).
Org-021/022/025	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD and/or GC-MS/GC-MSMS. Note, the Total +ve PCBs PQL is reflective of the lowest individual PQL and is therefore" Total +ve PCBs" is simply a sum of
	the positive individual PCBs.
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS/GC-MSMS.
Org-022/025	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-MS/GC-MSMS.
	Note, the Total +ve reported DDD+DDE+DDT PQL is reflective of the lowest individual PQL and is therefore simply a sum of the positive individually report DDD+DDE+DDT.
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS and/or GC-MS/MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013. For soil results:-
	1. 'EQ PQL'values are assuming all contributing PAHs reported as <pql 'eq="" 2.="" <pql="" actually="" all="" and="" and<="" approach="" are="" as="" assuming="" at="" be="" calculation="" can="" conservative="" contribute="" contributing="" false="" give="" given="" is="" least="" may="" most="" not="" pahs="" positive="" pql.="" present.="" reported="" td="" teq="" teqs="" that="" the="" this="" to="" zero'values="" zero.=""></pql>
	is more susceptible to false negative TEQs when PAHs that contribute to the TEQ calculation are present but below PQL. 3. 'EQ half PQL'values are assuming all contributing PAHs reported as <pql a="" are="" half="" hence="" mid-point<="" pql.="" stipulated="" td="" the=""></pql>
	between the most and least conservative approaches above. Note, the Total +ve PAHs PQL is reflective of the lowest individual PQL and is therefore "Total +ve PAHs" is simply a sum of the positive individual PAHs.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
	Note, the Total +ve Xylene PQL is reflective of the lowest individual PQL and is therefore "Total +ve Xylenes" is simply a sum of the positive individual Xylenes.

QUAL I TY CON	TROL: vTRH	(C6-C10)	/BTEXN in Soi l			Du	p l icate		Spike Red	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-2	[NT]
Date extracted	-			20/12/2024	[NT]		[NT]	[NT]	20/12/2024	
Date analysed	-			20/12/2024	[NT]		[NT]	[NT]	20/12/2024	
TRH C ₆ - C ₉	mg/kg	25	Org-023	<25	[NT]		[NT]	[NT]	125	
TRH C ₆ - C ₁₀	mg/kg	25	Org-023	<25	[NT]		[NT]	[NT]	125	
Benzene	mg/kg	0.2	Org-023	<0.2	[NT]		[NT]	[NT]	128	
Toluene	mg/kg	0.5	Org-023	<0.5	[NT]		[NT]	[NT]	127	
Ethylbenzene	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	123	
m+p-xylene	mg/kg	2	Org-023	<2	[NT]		[NT]	[NT]	124	
o-Xylene	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	126	
Naphthalene	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Surrogate aaa-Trifluorotoluene	%		Org-023	108	[NT]		[NT]	[NT]	113	

QUALITY CO	NTROL: svT	RH (C10-	-C40) in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-2	[NT]
Date extracted	-			20/12/2024	[NT]		[NT]	[NT]	20/12/2024	
Date analysed	-			23/12/2024	[NT]		[NT]	[NT]	23/12/2024	
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-020	<50	[NT]		[NT]	[NT]	103	
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-020	<100	[NT]		[NT]	[NT]	96	
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-020	<100	[NT]		[NT]	[NT]	124	
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-020	<50	[NT]		[NT]	[NT]	103	
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-020	<100	[NT]		[NT]	[NT]	96	
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-020	<100	[NT]		[NT]	[NT]	124	
Surrogate o-Terphenyl	%		Org-020	94	[NT]		[NT]	[NT]	102	

QUA	LITY CONTRO	L: PAHs	in Soi l			Du	plicate		Spike Rec	overy %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-2	[NT]
Date extracted	-			20/12/2024	[NT]		[NT]	[NT]	20/12/2024	
Date analysed	-			23/12/2024	[NT]		[NT]	[NT]	23/12/2024	
Naphthalene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	112	
Acenaphthylene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Acenaphthene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	98	
Fluorene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	98	
Phenanthrene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	116	
Anthracene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Fluoranthene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	116	
Pyrene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	118	
Benzo(a)anthracene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Chrysene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	120	
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	[NT]	
Benzo(a)pyrene	mg/kg	0.05	Org-022/025	<0.05	[NT]		[NT]	[NT]	110	
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Benzo(g,h,i)perylene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Surrogate p-Terphenyl-d14	%		Org-022/025	83	[NT]		[NT]	[NT]	93	

QUAL I TY CON	TROL: Organo	ch l orine F	Pesticides in soi l			Du	plicate		Spike Rec	overy %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-2	[NT]
Date extracted	-			20/12/2024	[NT]		[NT]	[NT]	20/12/2024	
Date analysed	-			23/12/2024	[NT]		[NT]	[NT]	23/12/2024	
alpha-BHC	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	114	
НСВ	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
beta-BHC	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	123	
gamma-BHC	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Heptachlor	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	108	
delta-BHC	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Aldrin	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	122	
Heptachlor Epoxide	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	130	
gamma-Chlordane	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
alpha-chlordane	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Endosulfan I	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
pp-DDE	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	114	
Dieldrin	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	128	
Endrin	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	114	
Endosulfan II	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
pp-DDD	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	128	
Endrin Aldehyde	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
pp-DDT	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Endosulfan Sulphate	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	94	
Methoxychlor	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Mirex	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Surrogate 4-Chloro-3-NBTF	%		Org-022/025	75	[NT]		[NT]	[NT]	87	

QUALIT	Y CONTRO	L: PCBs	in Soi l			Du	plicate		Spike Red	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-2	[NT]
Date extracted	-			20/12/2024	[NT]		[NT]	[NT]	20/12/2024	
Date analysed	-			23/12/2024	[NT]		[NT]	[NT]	23/12/2024	
Aroclor 1016	mg/kg	0.1	Org-021/022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Aroclor 1221	mg/kg	0.1	Org-021/022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Aroclor 1232	mg/kg	0.1	Org-021/022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Aroclor 1242	mg/kg	0.1	Org-021/022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Aroclor 1248	mg/kg	0.1	Org-021/022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Aroclor 1254	mg/kg	0.1	Org-021/022/025	<0.1	[NT]		[NT]	[NT]	123	
Aroclor 1260	mg/kg	0.1	Org-021/022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Surrogate 2-Fluorobiphenyl	%		Org-021/022/025	78	[NT]	[NT]	[NT]	[NT]	85	[NT]

QUALITY CONT	ROL: Acid E	xtractable	e metals in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date prepared	-			20/12/2024	[NT]		[NT]	[NT]	20/12/2024	
Date analysed	-			23/12/2024	[NT]		[NT]	[NT]	23/12/2024	
Arsenic	mg/kg	4	Metals-020	<4	[NT]		[NT]	[NT]	102	
Cadmium	mg/kg	0.4	Metals-020	<0.4	[NT]		[NT]	[NT]	91	
Chromium	mg/kg	1	Metals-020	<1	[NT]		[NT]	[NT]	98	
Copper	mg/kg	1	Metals-020	<1	[NT]		[NT]	[NT]	107	
Lead	mg/kg	1	Metals-020	<1	[NT]		[NT]	[NT]	97	
Mercury	mg/kg	0.1	Metals-021	<0.1	[NT]		[NT]	[NT]	117	
Nickel	mg/kg	1	Metals-020	<1	[NT]		[NT]	[NT]	99	
Zinc	mg/kg	1	Metals-020	<1	[NT]	[NT]	[NT]	[NT]	92	[NT]

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Control	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Where matrix spike recoveries fall below the lower limit of the acceptance criteria (e.g. for non-labile or standard Organics <60%), positive result(s) in the parent sample will subsequently have a higher than typical estimated uncertainty (MU estimates supplied on request) and in these circumstances the sample result is likely biased significantly low.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Report Comments

Asbestos-ID in soil: NEPM

This report is consistent with the reporting recommendations in the National Environment Protection (Assessment of Site Contamination) Measure, Schedule B1, May 2013. This is reported outside our scope of NATA accreditation.

Envirolab Reference: 369516 Page | 20 of 20

Revision No: R00

RE: Eurofins Sample Receipt Advice - Report 1174208 : Site MATRAVILLE (MATRAVILLE)

From Milad Noujaim <mnoujaim@jbsg.com.au>

Date Tue 21/01/2025 1:37 PM

To Andrew Black < Andrew. Black@eurofinsanz.com >

Cc EnviroSampleNSW@eurofins.com < EnviroSampleNSW@eurofins.com >

Unverified Sender: The sender of this email has not been verified. Review the content of the message carefully and verify the identity of the sender before acting on this email: replying, opening attachments or clicking links.

Hi Team,

Can I get the following on a 24 hr TAT please:

- TP10 0-0.1 for silica gel
- TP10 0.2-0.3 for TRH and Zinc
- TP23 0.2-0.3 for Zinc

Kind Regards,

T: 02 8245 0300 | M: 0401 230 032 | E: mnoujaim@jbsg.com.au | W: jbsg.com.au | L: Conditions and Limitations

Exceptional Outcomes

From: Milad Noujaim

Sent: Tuesday, 14 January 2025 10:31 AM

To: Andrew Black < Andrew. Black@eurofinsanz.com>

Cc: EnviroSampleNSW@eurofins.com

Subject: RE: Eurofins Sample Receipt Advice - Report 1174208 : Site MATRAVILLE (MATRAVILLE)

Hi Team,

Can I get the results for this.

Kind Regards,

T: 02 8245 0300 | M: 0401 230 032 | E: mnoujaim@jbsg.com.au | W: jbsg.com.au | L: Conditions and Limitations

Exceptional Outcomes

From: Andrew Black < Andrew.Black@eurofinsanz.com >

Sent: Thursday, 9 January 2025 9:08 AM **To:** Milad Noujaim < mnoujaim@jbsg.com.au

Subject: RE: Eurofins Sample Receipt Advice - Report 1174208 : Site MATRAVILLE (MATRAVILLE)

[EXTERNAL EMAIL] Stop and think before opening attachments, clicking or responding.

Hard to predict at this stage Milad. Still missing the asbestos, organics and metals. Hopeful by end of tomorrow. Unfortunately we have only 50% of our staff on board, so many still away on leave.

Andrew Black

Analytical Services Manager

Eurofins | Environment Testing Australia Pty Ltd

1 / 2 Frost Drive

Mayfield West, NSW, 2304 Phone: +61 2 9900 8490 Mobile: +61 410 220 750

Email: Andrew.Black@eurofinsanz.com

Website: eurofins.com.au/environmental-testing

https://www.eurofins-estore.com.au/

Please note my work hours are 8:30am-5:30pm, anything outside of that I will get to the next day. Contact evening shift ASM for anything urgent.

This e-mail including its attachments may contain confidential and proprietary information. Any unauthorized disclosure or use of this e-mail including its attachments is prohibited and may be prosecuted. If you are not the intended recipient, please inform the sender by an e-mail reply and delete the message.

Transmission by e-mail is not secure and can result in errors or omissions in the content of the message. Despite state-of-the-art precautions we cannot guarantee that e-mails and attachments are free from viruses. We accept no liability for viruses or any transmission-related errors and omissions. You need to always virus-check any e-mails and attachments.

Eurofins companies are independent legal entities that are bound only by members of their management bodies. No other persons have representation power unless specifically authorised by proxy or other legal means.

From: Milad Noujaim <mnoujaim@jbsg.com.au>

Sent: Thursday, 9 January 2025 8:58 AM

To: Andrew Black < Andrew.Black@eurofinsanz.com>

Subject: FW: Eurofins Sample Receipt Advice - Report 1174208 : Site MATRAVILLE (MATRAVILLE)

Unverified Sender: The sender of this email has not been verified. Review the content of the message carefully and verify the identity of the sender before acting on this email: replying, opening attachments or clicking links.

Hi Andrew,

Do we have an update for 1174208

Kind Regards,

Milad Noujaim | Senior Environmental Consultant | JBS&G

Gadigal Country | Level 8, 179 Elizabeth Street, Sydney, NSW

T: 02 8245 0300 | M: 0401 230 032 | E: mnoujaim@jbsg.com.au | W: jbsg.com.au | L: Conditions and Limitations

Exceptional Outcomes

From: Andrew Black < Andrew. Black@eurofinsanz.com >

Sent: Monday, 6 January 2025 12:48 PM **To:** Milad Noujaim < mnoujaim@jbsg.com.au>

Subject: RE: Eurofins Sample Receipt Advice - Report 1174208 : Site MATRAVILLE (MATRAVILLE)

[EXTERNAL EMAIL] Stop and think before opening attachments, clicking or responding.

I'll place this one for you now Milad.

Andrew Black

Analytical Services Manager

Eurofins | Environment Testing Australia Pty Ltd

1 / 2 Frost Drive

Mayfield West, NSW, 2304 Phone: +61 2 9900 8490 Mobile: +61 410 220 750

Email: Andrew.Black@eurofinsanz.com

Website: eurofins.com.au/environmental-testing

https://www.eurofins-estore.com.au/

Please note my work hours are 8:30am-5:30pm, anything outside of that I will get to the next day. Contact evening shift ASM for anything urgent.

This e-mail including its attachments may contain confidential and proprietary information. Any unauthorized disclosure or use of this e-mail including its attachments is prohibited and may be prosecuted. If you are not the intended recipient, please inform the sender by an e-mail reply and delete the message.

Transmission by e-mail is not secure and can result in errors or omissions in the content of the message. Despite state-of-the-art precautions we cannot guarantee that e-mails and attachments are free from viruses. We accept no liability for viruses or any transmission-related errors and omissions. You need to always virus-check any e-mails and attachments

Eurofins companies are independent legal entities that are bound only by members of their management bodies. No other persons have representation power unless specifically authorised by proxy or other legal means.

From: Milad Noujaim < mnoujaim@jbsg.com.au >

Sent: Monday, 6 January 2025 12:14 PM

To: EET-ELVIS@eurofinsanz.com

Cc: Finn Billyard-Currey < fbillyardcurrey@jbsg.com.au; Andrew Black < Andrew.Black@eurofinsanz.com>

Subject: RE: Eurofins Sample Receipt Advice - Report 1174208 : Site MATRAVILLE (MATRAVILLE)

Unverified Sender: The sender of this email has not been verified. Review the content of the message carefully and verify the identity of the sender before acting on this email: replying, opening attachments or clicking links.

Hi Team,

Can we get the following analysis conducted:

- TP09 0-0.2 for asbestos NEPM
- Extra TP21 0.4-0.5 log as TP21 0-0.5 and analyse for asbestos NEPM
- Extra TP18_0-0.3 log as TP19_0-0.5 and analyse for asbestos NEPM

All asbestos analysis are NEPM/WA

Kind Regards,

T: 02 8245 0300 | M: 0401 230 032 | E: mnoujaim@jbsg.com.au | W: jbsg.com.au | L: Conditions and Limitations

Exceptional Outcomes

From: Finn Billyard-Currey < fbillyardcurrey@jbsg.com.au>

Sent: Monday, 6 January 2025 9:31 AM

To: Milad Noujaim < mnoujaim@jbsg.com.au>

Subject: Fw: Eurofins Sample Receipt Advice - Report 1174208 : Site MATRAVILLE (MATRAVILLE)

From: Finn Billyard-Currey < fbillyardcurrey@jbsg.com.au >

Sent: Monday, January 6, 2025 9:30:26 am

To: EnviroSampleNSW@eurofinsanz.com < EnviroSampleNSW@eurofinsanz.com >

Subject: Re: Eurofins Sample Receipt Advice - Report 1174208 : Site MATRAVILLE (MATRAVILLE)

Could we get TP21 0.4-0.5 analysed for asbestos please? Thank you.

From: George Lewis < EET-ELVIS@eurofinsanz.com Sent: Friday, December 27, 2024 1:40:08 PM

To: Finn Billyard-Currey < fbillyardcurrey@jbsg.com.au>

Cc: JBSG Labresults < jbsglabresults@jbsg.com.au >; S&G Labresults < labresults@jbsg.com.au > Subject: Eurofins Sample Receipt Advice - Report 1174208 : Site MATRAVILLE (MATRAVILLE)

[EXTERNAL EMAIL] Stop and think before opening attachments, clicking or responding.

Dear Valued Client,

Please be advised that over the holiday period, the standard TAT has been extended. Results for samples received after the 13th of December will be reported in January 2025. Please contact our ASM team if you have any questions. Bag are not provided for samples TP09_0.0-0.1, TP19_0-0.5, TP21_0-0.5, AsbWA analysis cancelled, please advise if As4964 testing was intended in the COC. Bag are not received for sample TP11_0-0.1, however Jar is available for sample TP11_0-0.1.

TP09_0-0.2, TP11_0-0.2 received bag as extra, not in COC, logged on hold, please advise for analysis.

TP21_0.4-0.5 bag received as extra with sample. TP18_0.0-0.3 received bag as extra logged on hold, please advise for analysis if any.

Please find attached a Sample Receipt Advice (SRA), a Summary Sheet and a scanned copy of your Chain-of-Custody (COC). It is important that you check this documentation to ensure that the details are correct such as the Client Job Number, Turn Around Time, any comments in the Notes section and sample numbers as well as the requested analysis. If there are any irregularities then please contact your Eurofins Analytical Services Manager as soon as possible to make certain that they get changed.

Kind Regards George Lewis

EnviroNote 1117 - Urban Runoff Mortality Syndrome 6-PPD quinone & HMMM EnviroNote 1115 - Eurofins SYDNEY Laboratory is now NATA accredited for PFAS

View our latest EnviroNotes

EnviroSales@eurofinsanz.com

Eurofins Environment Testing Australia Pty Ltd

ABN: 91 05 0159 898 ABN: 50 005 085 521 Perth

Melbourne Geelong 6 Monterey Road 19/8 Lewalan Street 179 Magowar Road Dandenong South Grovedale VIC 3175 VIC 3216 +61 3 8564 5000 +61 3 8564 5000 NATA# 1261 NATA# 1261 Site# 1254 Site# 25403

Unit 1.2 Dacre Street Mitchell Girraween NSW 2145 ACT 2911 +61 2 9900 8400 +61 2 6113 8091 NATA# 1261 NATA# 1261 Site# 18217 Site# 25466

1/21 Smallwood Place 1/2 Frost Drive Murarrie QLD 4172 T: +61 7 3902 4600 NATA# 1261 Site# 20794 & 2780

Newcastle Mayfield West NSW 2304 +61 2 4968 8448 NATA# 1261 Site# 25079

46-48 Banksia Road Welshpool WA 6106 +61 8 6253 4444 NATA# 2377 Site# 2370 & 2554

35 O'Rorke Road Penrose, Auckland 1061 +64 9 526 4551

IANZ# 1327

NZBN: 9429046024954

Auckland (Focus) Unit C1/4 Pacific Rise 43 Detroit Drive Mount Wellington, Auckland 1061 +64 9 525 0568 IANZ# 1308

Christchurch Rolleston, Christchurch 7675 IANZ# 1290

Tauranga 1277 Cameron Road Gate Pa, Tauranga 3112 +64 9 525 0568 IANZ# 1402

Sample Receipt Advice

Company name: Contact name: Project name: Project ID: Turnaround time:

JBS & G Australia (NSW) P/L Finn Billyard-Currey
ADDITIONAL: MATRAVILLE MATRAVILLE

Date/Time received **Eurofins reference**

1 Day Jan 21, 2025 1:37 PM 1179548

Sample Information

A detailed list of analytes logged into our LIMS, is included in the attached summary table.

Sample Temperature of chilled sample on the batch as recorded by Eurofins Sample Receipt: 13.8 degrees Celsius.

All samples have been received as described on the above COC.

COC has been completed correctly.

Attempt to chill was evident.

Appropriately preserved sample containers have been used.

All samples were received in good condition.

Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.

Appropriate sample containers have been used.

Sample containers for volatile analysis received with zero headspace.

Split sample sent to requested external lab.

Some samples have been subcontracted.

N/A Custody Seals intact (if used).

Notes

Contact

If you have any questions with respect to these samples, please contact your Analytical Services Manager:

Andrew Black on phone: (+61) 2 9900 8490 or by email: Andrew.Black@eurofinsanz.com

Results will be delivered electronically via email to Finn Billyard-Currey - fbillyardcurrey@jbsg.com.au.

Eurofins Environment Testing Australia Pty Ltd

Site# 25403

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175 +61 3 8564 5000 email: EnviroSales@eurofinsanz.com NATA# 1261 Site# 1254

Geelong 19/8 Lewalan Street Grovedale VIC 3216 +61 3 8564 5000 NATA# 1261

Sydney Canberra 179 Magowar Road Unit 1.2 Dacre Street Girraween Mitchell NSW 2145 ACT 2911 +61 2 9900 8400 +61 2 6113 8091 NATA# 1261 NATA# 1261 Site# 18217 Site# 25466

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 T: +61 7 3902 4600 NATA# 1261 Site# 20794 & 2780

Newcastle 1/2 Frost Drive Mayfield West NSW 2304 +61 2 4968 8448 NATA# 1261 Site# 25079

Eurofins ARL Pty Ltd ABN: 91 05 0159 898

Perth 46-48 Banksia Road Welshpool WA 6106 +61 8 6253 4444 NATA# 2377 Site# 2370 & 2554

Auckland 35 O'Rorke Road Penrose, Auckland 1061 +64 9 526 4551 IANZ# 1327

NZBN: 9429046024954

Auckland (Focus) Unit C1/4 Pacific Rise. Mount Wellington, Auckland 1061 +64 9 525 0568 IANZ# 1308

Received:

Eurofins Environment Testing NZ Ltd

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 +64 3 343 5201 IANZ# 1290

Jan 21, 2025 1:37 PM

Tauranga 1277 Cameron Road. Gate Pa, Tauranga 3112 +64 9 525 0568 IANZ# 1402

Address

web: www.eurofins.com.au

Company Name: JBS & G Australia (NSW) P/L Level 8, 179 Elizabeth St

Sydney NSW 2000

Project Name: Project ID:

ADDITIONAL: MATRAVILLE

MATRAVILLE

Order No.:

Report #: 1179548 Phone: 02 8245 0300

Fax:

Due: Jan 22, 2025 Priority: Contact Name:

1 Day Finn Billyard-Currey

Eurofins Analytical Services Manager: Andrew Black

		Sa	mple Detail			Zinc	TRH (after Silica Gel cleanup)	Moisture Set	Total Recoverable Hydrocarbons
Sydr	ney Laboratory	- NATA # 1261	Site # 18217	<u> </u>		Χ	Х	Х	Х
Exte	rnal Laboratory	<u>.</u>			_				
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID				
1	TP10_0-0.1	Dec 18, 2024		Soil	S25-Ja0030901		Х	Х	
2	TP10_0.2-0.3	Dec 18, 2024		Soil	S25-Ja0030902	Χ		Х	Х
3	TP23_0.2-0.3	Dec 18, 2024		Soil	S25-Ja0030903	Χ		Х	
Test	Counts	2	1	3	1				

Environment Testing

JBS & G Australia (NSW) P/L Level 8, 179 Elizabeth St Sydney NSW 2000

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection, proficiency testing scheme providers and reference materials producers reports and certificates.

Attention: Finn Billyard-Currey

Report 1179548-S

Project name ADDITIONAL: MATRAVILLE

Project ID MATRAVILLE
Received Date Jan 21, 2025

Client Sample ID			TP10_0-0.1	TP10_0.2-0.3	TP23_0.2-0.3
Sample Matrix			Soil	Soil	Soil
Eurofins Sample No.			S25-Ja0030901	S25-Ja0030902	S25-Ja0030903
Date Sampled			Dec 18, 2024	Dec 18, 2024	Dec 18, 2024
Test/Reference	LOR	Unit			
TRH - 2013 NEPM Fractions (after silica gel clean-u	p)	•			
TRH >C10-C16 (after silica gel clean-up)	50	mg/kg	< 50	-	-
TRH >C16-C34 (after silica gel clean-up)	100	mg/kg	< 100	-	-
TRH >C34-C40 (after silica gel clean-up)	100	mg/kg	< 100	-	-
TRH >C10-C40 (total) (after silica-gel clean up)*	100	mg/kg	< 100	-	-
TRH - 1999 NEPM Fractions (after silica gel clean-u	p)				
TRH C10-C14 (after silica gel clean-up)	50	mg/kg	< 50	-	-
TRH C15-C28 (after silica gel clean-up)	100	mg/kg	< 100	-	-
TRH C29-C36 (after silica gel clean-up)	100	mg/kg	< 100	-	-
TRH C10-C36 (Total) (after silica gel clean-up)	50	mg/kg	< 100	-	-
Sample Properties					
% Moisture	1	%	4.5	< 1	2.0
Total Recoverable Hydrocarbons					
TRH C6-C9	20	mg/kg	-	< 20	-
TRH C10-C14	20	mg/kg	-	< 20	-
TRH C15-C28	50	mg/kg	-	< 50	-
TRH C29-C36	50	mg/kg	-	< 50	=
TRH C10-C36 (Total)	50	mg/kg	-	< 50	=
TRH C6-C10	20	mg/kg	-	< 20	-
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	-	< 20	-
TRH >C10-C16	50	mg/kg	-	< 50	-
TRH >C10-C16 less Naphthalene (F2)*N01	50	mg/kg	-	< 50	-
TRH >C16-C34	100	mg/kg	-	< 100	-
TRH >C34-C40	100	mg/kg	-	< 100	-
TRH >C10-C40 (total)*	100	mg/kg	-	< 100	-
Total Recoverable Hydrocarbons - 2013 NEPM Frac	tions				
Naphthalene ^{N02}	0.5	mg/kg	-	< 0.5	-
Heavy Metals					
Zinc	5	mg/kg	-	36	120

Sample History

Where samples are submitted/analysed over several days, the last date of extraction is reported.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
TRH - 2013 NEPM Fractions (after silica gel clean-up)	Sydney	Jan 21, 2025	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
TRH - 1999 NEPM Fractions (after silica gel clean-up)	Sydney	Jan 21, 2025	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
% Moisture	Sydney	Jan 21, 2025	14 Days
- Method: LTM-GEN-7080 Moisture			
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Sydney	Jan 21, 2025	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Jan 21, 2025	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Jan 21, 2025	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Heavy Metals	Sydney	Jan 21, 2025	28 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			

email: EnviroSales@eurofinsanz.com

Eurofins Environment Testing Australia Pty Ltd

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175

+61 3 8564 5000

NATA# 1261

Site# 1254

Geelong Sydney 19/8 Lewalan Street 179 Magowar Road Grovedale Girraween VIC 3216 NSW 2145 +61 3 8564 5000 +61 2 9900 8400 NATA# 1261 NATA# 1261 Site# 25403 Site# 18217

Canberra Brisbane Unit 1.2 Dacre Street 1/21 Smallwood Place Mitchell Murarrie ACT 2911 QLD 4172 T: +61 7 3902 4600 +61 2 6113 8091 NATA# 1261 NATA# 1261 Site# 20794 & 2780 Site# 25466

Newcastle 1/2 Frost Drive Mayfield West NSW 2304 +61 2 4968 8448 NATA# 1261 Site# 25079

Perth 46-48 Banksia Road Welshpool WA 6106 +61 8 6253 4444 NATA# 2377 Site# 2370 & 2554

Auckland 35 O'Rorke Road Penrose, Auckland 1061 +64 9 526 4551 IANZ# 1327

NZBN: 9429046024954

Eurofins Environment Testing NZ Ltd

Auckland (Focus) Unit C1/4 Pacific Rise. Mount Wellington, Rolleston, Auckland 1061 +64 9 525 0568 IANZ# 1308 IANZ# 1290

Christchurch Tauranga 43 Detroit Drive 1277 Cameron Road. Gate Pa, Christchurch 7675 Tauranga 3112 +64 3 343 5201 +64 9 525 0568 IANZ# 1402

Company Name: Address

web: www.eurofins.com.au

JBS & G Australia (NSW) P/L Level 8, 179 Elizabeth St

Sydney NSW 2000

Project Name: Project ID:

ADDITIONAL: MATRAVILLE

MATRAVILLE

Order No.: Report #:

Phone:

Fax:

1179548

Eurofins ARL Pty Ltd

ABN: 91 05 0159 898

02 8245 0300

Received: Jan 21, 2025 1:37 PM Jan 22, 2025 Due:

Priority:

1 Day Finn Billyard-Currey Contact Name:

Eurofins Analytical Services Manager: Andrew Black

Sydney Laboratory - NATA # 1261 Site # 18217			Sa	mple Detail			Zinc	TRH (after Silica Gel cleanup)	Moisture Set	Total Recoverable Hydrocarbons
No Sample ID Sample Date Time Sampling Time Matrix LAB ID 1 TP10_0-0.1 Dec 18, 2024 Soil S25-Ja0030901 X X 2 TP10_0.2-0.3 Dec 18, 2024 Soil S25-Ja0030902 X X X 3 TP23_0.2-0.3 Dec 18, 2024 Soil S25-Ja0030903 X X	Sydn	ey Laboratory	- NATA # 1261	Site # 18217	*		Χ	Х	Х	Х
Time Soil S25-Ja0030901 X X 2 TP10_0.2-0.3 Dec 18, 2024 Soil S25-Ja0030902 X X 3 TP23_0.2-0.3 Dec 18, 2024 Soil S25-Ja0030903 X X	Exte	rnal Laboratory	1							
2 TP10_0.2-0.3 Dec 18, 2024 Soil S25-Ja0030902 X X X X 3 TP23_0.2-0.3 Dec 18, 2024 Soil S25-Ja0030903 X X	No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID				
3 TP23_0.2-0.3 Dec 18, 2024 Soil S25-Ja0030903 X X	1	TP10_0-0.1	Dec 18, 2024		Soil	S25-Ja0030901		Х	Х	
3 TP23_0.2-0.3 Dec 18, 2024 Soil S25-Ja0030903 X X		TP10_0.2-0.3	Dec 18, 2024		Soil	S25-Ja0030902	Х		Х	Х
Test Counts 2 1 3 1		TP23_0.2-0.3	Dec 18, 2024		Soil	S25-Ja0030903	Χ		Χ	
	Test	Counts					2	1	3	1

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follow guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013. They are included in this QC report where applicable. Additional QC data may be available on request
- 2. Unless otherwise stated, all soil/sediment/solid results are reported on a dry weight basis.
- 3. Unless otherwise stated, all biota/food results are reported on a wet weight basis on the edible portion.
- 4. For CEC results where the sample's origin is unknown or environmentally contaminated, the results should be used advisedly.
- Actual LORs are matrix dependent. Quoted LORs may be raised where sample extracts are diluted due to interferences
- Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds where annotated.
- 7. SVOC analysis on waters is performed on homogenised, unfiltered samples unless noted otherwise
- 8. Samples were analysed on an 'as received' basis.
- 9. Information identified in this report with blue colour indicates data provided by customers that may have an impact on the results.
- 10. This report replaces any interim results previously issued.

Holding Times

Please refer to the 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours before sample receipt deadlines as stated on the SRA

If the Laboratory did not receive the information in the required timeframe, and despite any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the sampling date: therefore, compliance with these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether, the holding time is seven days; however, for all other VOCs, such as BTEX or C6-10 TRH, the holding time is 14 days

Units

mg/kg: milligrams per kilogram mg/L: milligrams per litre ppm: parts per million μg/L: micrograms per litre ppb: parts per billion %: Percentage

org/100 mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100 mL: Most Probable Number of organisms per 100 millilitres

Colour: Pt-Co Units (CU) CFU: Colony Forming Unit

Terms

APHA American Public Health Association CEC Cation Exchange Capacity COC Chain of Custody

CP Client Parent - QC was performed on samples pertaining to this report CRM Certified Reference Material (ISO17034) - reported as percent recovery.

Dry Where moisture has been determined on a solid sample, the result is expressed on a dry weight basis

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

LOR Limit of Reporting

LCS Laboratory Control Sample - reported as percent recovery.

Method Blank In the case of solid samples, these are performed on laboratory-certified clean sands and in the case of water samples, these are performed on de-ionised water NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC represents the sequence or batch that client samples were analysed within.

RPD Relative Percent Difference between two Duplicate pieces of analysis SPIKE Addition of the analyte to the sample and reported as percentage recovery.

SRA Sample Receipt Advice

The addition of a similar compound to the analyte target is reported as percentage recovery. See below for acceptance criteria Surr - Surrogate

Tributyltin oxide (bis-tributyltin oxide) - individual tributyltin compounds cannot be identified separately in the environment; however, free tributyltin was measured, and its values were converted stoichiometrically into tributyltin oxide for comparison with regulatory limits. TRTO

TCI P Toxicity Characteristic Leaching Procedure TEQ Toxic Equivalency Quotient or Total Equivalence

QSM US Department of Defense Quality Systems Manual Version 6.0

US EPA United States Environmental Protection Agency

Sum of PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA WA DWER

QC - Acceptance Criteria

The acceptance criteria should only be used as a guide and may be different when site-specific Sampling Analysis and Quality Plan (SAQP) have been implemented.

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is ≤30%; however, the following acceptance guidelines are equally applicable:

Results <10 times the LOR: No Limit

Results between 10-20 times the LOR: RPD must lie between 0-50% Results >20 times the LOR: RPD must lie between 0-30%

NOTE: pH duplicates are reported as a range, not as RPD

Surrogate Recoveries: Recoveries must lie between 20-130% for Speciated Phenols & 50-150% for PFAS. SVOCs recoveries 20 - 150%, VOC recoveries 50 - 150%

PFAS field samples containing surrogate recoveries above the QC limit designated in QSM 6.0, where no positive PFAS results have been reported or reviewed, and no data was affected.

QC Data General Comments

- 1. Where a result is reported as less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown are not data from your samples
- 3. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore, laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 4. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of recovery, the term "INT" appears against that analyte.
- 5. For Matrix Spikes and LCS results, a dash "-" in the report means that the specific analyte was not added to the QC sample.
- 6. Duplicate RPDs are calculated from raw analytical data; thus, it is possible to have two sets of data

Environment Testing

Quality Control Results

Test			Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Method Blank								
TRH - 2013 NEPM Fractions (after	silica gel clean-up)							
TRH >C10-C16 (after silica gel clear	n-up)		mg/kg	< 50		50	Pass	
TRH >C16-C34 (after silica gel clear	n-up)		mg/kg	< 100		100	Pass	
TRH >C34-C40 (after silica gel clear	n-up)		mg/kg	< 100		100	Pass	
Method Blank								
TRH - 1999 NEPM Fractions (after	silica gel clean-up)							
TRH C10-C14 (after silica gel clean-	·up)		mg/kg	< 50		50	Pass	
TRH C15-C28 (after silica gel clean-	·up)		mg/kg	< 100		100	Pass	
TRH C29-C36 (after silica gel clean-	·up)		mg/kg	< 100		100	Pass	
Method Blank								
Total Recoverable Hydrocarbons								
TRH C6-C9			mg/kg	< 20		20	Pass	
TRH C10-C14			mg/kg	< 20		20	Pass	
TRH C15-C28			mg/kg	< 50		50	Pass	
TRH C29-C36			mg/kg	< 50		50	Pass	
TRH C6-C10			mg/kg	< 20		20	Pass	
TRH >C10-C16			mg/kg	< 50		50	Pass	
TRH >C16-C34			mg/kg	< 100		100	Pass	
TRH >C34-C40			mg/kg	< 100		100	Pass	
Method Blank			mg/kg	100		100	1 033	
Total Recoverable Hydrocarbons -	2012 NEDM Erootic	nno						
	2013 NEFW FIACU	JIIS	ma/ka	4 O E		0.5	Door	
Naphthalene Mathad Blank			mg/kg	< 0.5		0.5	Pass	
Method Blank								
Heavy Metals						 _ _	D	
Zinc			mg/kg	< 5		5	Pass	
LCS - % Recovery					T T	<u> </u>		
TRH - 2013 NEPM Fractions (after							_	
TRH >C10-C16 (after silica gel clear	n-up)		%	71		70-130	Pass	
LCS - % Recovery								
TRH - 1999 NEPM Fractions (after								
TRH C10-C14 (after silica gel clean-	·up)		%	75		70-130	Pass	
LCS - % Recovery				ı				
Total Recoverable Hydrocarbons								
TRH C6-C9			%	108		70-130	Pass	
TRH C10-C14			%	83		70-130	Pass	
TRH C6-C10			%	105		70-130	Pass	
TRH >C10-C16			%	85		70-130	Pass	
LCS - % Recovery								
Total Recoverable Hydrocarbons -	2013 NEPM Fraction	ons						
Naphthalene			%	104		70-130	Pass	
LCS - % Recovery								
Heavy Metals								
Zinc			%	105		80-120	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery								
TRH - 2013 NEPM Fractions (after	silica gel clean-up)			Result 1				
TRH >C10-C16 (after silica gel clean-up)	S25-Ja0030912	NCP	%	101		70-130	Pass	
Spike - % Recovery								

Environment Testing

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
TRH C10-C14 (after silica gel clean-up)	S25-Ja0030912	NCP	%	100			70-130	Pass	
Spike - % Recovery									
Total Recoverable Hydrocarbons				Result 1					
TRH C6-C9	S25-Ja0027841	NCP	%	103			70-130	Pass	
TRH C10-C14	S25-Ja0030778	NCP	%	81			70-130	Pass	
TRH C6-C10	S25-Ja0027841	NCP	%	101			70-130	Pass	
TRH >C10-C16	S25-Ja0030778	NCP	%	83			70-130	Pass	
Spike - % Recovery	020 000000770	1401	70	00			70 100	1 400	
Total Recoverable Hydrocarbons -	2013 NEPM Fract	ions		Result 1					
Naphthalene	S25-Ja0027841	NCP	%	111			70-130	Pass	
Spike - % Recovery	023 340027041	1401	70	111			70-130	1 433	
Heavy Metals				Result 1					
Zinc	S25-Ja0021288	NCP	%	79			75-125	Pass	
ZIIIC		QA	/0	19			Acceptance	Pass	Qualifying
Test	Lab Sample ID	Source	Units	Result 1			Limits	Limits	Code
Duplicate									
TRH - 2013 NEPM Fractions (after	silica gel clean-up))		Result 1	Result 2	RPD			
TRH >C10-C16 (after silica gel clean-up)	S25-Ja0030901	СР	mg/kg	< 50	< 50	<1	30%	Pass	
TRH >C16-C34 (after silica gel									
clean-up) TRH >C34-C40 (after silica gel	S25-Ja0030901	СР	mg/kg	< 100	< 100	<1	30%	Pass	
clean-up)	S25-Ja0030901	CP	mg/kg	< 100	< 100	<1	30%	Pass	
Duplicate									
TRH - 1999 NEPM Fractions (after	silica gel clean-up)		Result 1	Result 2	RPD			
TRH C10-C14 (after silica gel clean-up)	S25-Ja0030901	СР	mg/kg	< 50	< 50	<1	30%	Pass	
TRH C15-C28 (after silica gel clean-up)	S25-Ja0030901	СР	mg/kg	< 100	< 100	<1	30%	Pass	
TRH C29-C36 (after silica gel clean-up)	S25-Ja0030901	СР	mg/kg	< 100	< 100	<1	30%	Pass	
TRH C10-C36 (Total) (after silica gel clean-up)	S25-Ja0030901	СР	mg/kg	< 100	100	<1	30%	Pass	
Duplicate				,					
Sample Properties				Result 1	Result 2	RPD			
% Moisture	S25-Ja0030901	CP	%	4.5	3.3	30	30%	Pass	
Duplicate				,					
Total Recoverable Hydrocarbons				Result 1	Result 2	RPD			
TRH C6-C9	S25-Ja0030930	NCP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C10-C14	W25-Ja0029490	NCP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C15-C28	W25-Ja0029490	NCP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH C29-C36	W25-Ja0029490	NCP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH C6-C10	S25-Ja0030930	NCP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH >C10-C16	W25-Ja0029490	NCP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH >C16-C34	W25-Ja0029490	NCP	mg/kg	< 100	< 100	<1	30%	Pass	
TRH >C34-C40	W25-Ja0029490	NCP	mg/kg	< 100	< 100	<1	30%	Pass	
Duplicate									
Total Recoverable Hydrocarbons -	2013 NEPM Fract	ions		Result 1	Result 2	RPD			
Naphthalene	S25-Ja0030930	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate									
Heavy Metals				Result 1	Result 2	RPD			

Comments

Sample Integrity

Custody Seals Intact (if used) N/A Attempt to Chill was evident Yes Sample correctly preserved Yes Appropriate sample containers have been used Yes Sample containers for volatile analysis received with minimal headspace Yes Samples received within HoldingTime Yes Some samples have been subcontracted No

Qualifier Codes/Comments

Code Description

F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis). N01

Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.

F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes. N04

Authorised by:

N02

Andrew Black Analytical Services Manager Mickael Ros Senior Analyst-Metal Raymond Siu Senior Analyst-Organic Raymond Siu Senior Analyst-Volatile

Ryan Phillips Senior Analyst-Sample Properties

Glenn Jackson **Managing Director**

Final Report - this report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

RE: Eurofins Test Results - Report 1174208 : Site MATRAVILLE (MATRAVILLE)

From Milad Noujaim <mnoujaim@jbsq.com.au>

Date Thu 23/01/2025 7:46 AM

To Andrew Black < Andrew. Black@eurofinsanz.com >

Unverified Sender: The sender of this email has not been verified. Review the content of the message carefully and verify the identity of the sender before acting on this email: replying, opening attachments or clicking links.

Can I please get TP23 0.4-0.5 analysed for Zinc on a same day TAT please.

Kind Regards,

Milad Noujaim | Senior Environmental Consultant | JBS&G

Gadigal Country | Level 8, 179 Elizabeth Street, Sydney, NSW

T: 02 8245 0300 | M: 0401 230 032 | E: mnoujaim@jbsg.com.au | W: jbsg.com.au | L: Conditions and Limitations

Exceptional Outcomes

From: Milad Noujaim

Sent: Wednesday, 22 January 2025 10:39 AM

To: Andrew Black < Andrew. Black@eurofinsanz.com>

Subject: RE: Eurofins Test Results - Report 1174208 : Site MATRAVILLE (MATRAVILLE)

Noted, thanks for the update.

Kind Regards,

Milad Noujaim | Senior Environmental Consultant | JBS&G

Gadigal Country | Level 8, 179 Elizabeth Street, Sydney, NSW

T: 02 8245 0300 | M: 0401 230 032 | E: mnoujaim@jbsg.com.au | W: jbsg.com.au | L: Conditions and Limitations

Exceptional Outcomes

From: Andrew Black < Andrew. Black@eurofinsanz.com >

Sent: Wednesday, 22 January 2025 10:38 AM **To:** Milad Noujaim < mnoujaim@jbsg.com.au>

Subject: RE: Eurofins Test Results - Report 1174208 : Site MATRAVILLE (MATRAVILLE)

[EXTERNAL EMAIL] Stop and think before opening attachments, clicking or responding.

I don't believe we did Milad since it was way past holding time on the TB/TS and wouldn't be worth doing due to the bad recoveries.

Andrew Black

Analytical Services Manager

Eurofins | Environment Testing Australia Pty Ltd

1 / 2 Frost Drive

Mayfield West, NSW, 2304

Phone: +61 2 9900 8490 Mobile: +61 410 220 750

Email: Andrew.Black@eurofinsanz.com

Website: eurofins.com.au/environmental-testing

https://www.eurofins-estore.com.au/

Please note my work hours are 8:30am-5:30pm, anything outside of that I will get to the next day. Contact evening shift ASM for anything urgent.

This e-mail including its attachments may contain confidential and proprietary information. Any unauthorized disclosure or use of this e-mail including its attachments is prohibited and may be prosecuted. If you are not the intended recipient, please inform the sender by an e-mail reply and delete the message.

Transmission by e-mail is not secure and can result in errors or omissions in the content of the message. Despite state-of-the-art precautions we cannot guarantee that e-mails and attachments are free from viruses. We accept no liability for viruses or any transmission-related errors and omissions. You need to always virus-check any e-mails and attachments

Eurofins companies are independent legal entities that are bound only by members of their management bodies. No other persons have representation power unless specifically authorised by proxy or other legal means.

From: Milad Noujaim <<u>mnoujaim@jbsg.com.au</u>>
Sent: Wednesday, 22 January 2025 10:36 AM
To: Andrew Black <<u>Andrew.Black@eurofinsanz.com</u>>

Cc: EnviroSampleNSW@eurofins.com

Subject: RE: Eurofins Test Results - Report 1174208 : Site MATRAVILLE (MATRAVILLE)

Unverified Sender: The sender of this email has not been verified. Review the content of the message carefully and verify the identity of the sender before acting on this email: replying, opening attachments or clicking links.

HI Andrew,

Did you end up analysing this? I haven't received an update?

Kind Regards,

Milad Noujaim | Senior Environmental Consultant | JBS&G Gadigal Country | Level 8, 179 Elizabeth Street, Sydney, NSW

T: 02 8245 0300 | M: 0401 230 032 | E: mnoujaim@jbsg.com.au | W: jbsg.com.au | L: Conditions and Limitations

Exceptional Outcomes

From: Milad Noujaim

Sent: Tuesday, 14 January 2025 1:29 PM **To:** Andrew.Black@eurofinsanz.com

Subject: RE: Eurofins Test Results - Report 1174208: Site MATRAVILLE (MATRAVILLE)

Can we please analyse TS/TB for BTEX on an ASAP TAT

Kind Regards,

Milad Noujaim | Senior Environmental Consultant | JBS&G

Gadigal Country | Level 8, 179 Elizabeth Street, Sydney, NSW

T: 02 8245 0300 | M: 0401 230 032 | E: mnoujaim@jbsg.com.au | W: jbsg.com.au | L: Conditions and Limitations

Exceptional Outcomes

From: Andrew Black < < EET-ELVIS@eurofinsanz.com >

Sent: Tuesday, 14 January 2025 10:33 AM

To: Milad Noujaim < mnoujaim@jbsg.com.au>

Subject: Eurofins Test Results - Report 1174208 : Site MATRAVILLE (MATRAVILLE)

[EXTERNAL EMAIL] Stop and think before opening attachments, clicking or responding.

Here you go Milad.

Kindest Regards,

Andrew Black

Analytical Services Manager

Eurofins | Environment Testing

Unit 1
2 Frost Drive
MAYFIELD WEST NSW 2304
AUSTRALIA

Phone: +61 299 008 490 Mobile: +61 410 220 750

Email: <u>Andrew.Black@eurofinsanz.com</u>
Website:[http://]environment.eurofins.com.au

View our latest EnviroNotes

EnviroSales@eurofinsanz.com

Eurofins Environment Testing Australia Pty Ltd

ABN: 50 005 085 521 Melbourne Geelong 19/8 Lewalan Street 179 Magowar Road Unit 1.2 Dacre Street 1/21 Smallwood Place 1/2 Frost Drive

6 Monterey Road Dandenong South VIC 3175 +61 3 8564 5000 NATA# 1261 Site# 1254

Grovedale VIC 3216 +61 3 8564 5000 NATA# 1261 Site# 25403

Girraween NSW 2145 +61 2 9900 8400 NATA# 1261 Site# 18217

Mitchell ACT 2911 +61 2 6113 8091 NATA# 1261 Site# 25466

Murarrie QLD 4172 T: +61 7 3902 4600 NATA# 1261 Site# 20794 & 2780

Newcastle Mayfield West NSW 2304 +61 2 4968 8448 NATA# 1261 Site# 25079

Perth 46-48 Banksia Road Welshpool WA 6106 +61 8 6253 4444 NATA# 2377 Site# 2370 & 2554

ABN: 91 05 0159 898

35 O'Rorke Road Penrose, Auckland 1061 +64 9 526 4551 IANZ# 1327

NZBN: 9429046024954

Auckland (Focus) Unit C1/4 Pacific Rise 43 Detroit Drive Mount Wellington, Auckland 1061 +64 9 525 0568 IANZ# 1308

Christchurch Rolleston, Christchurch 7675 IANZ# 1290

Tauranga 1277 Cameron Road Gate Pa, Tauranga 3112 +64 9 525 0568 IANZ# 1402

Sample Receipt Advice

Company name: Contact name: Project name: Project ID:

Turnaround time:

JBS & G Australia (NSW) P/L Finn Billyard-Currey
ADDITIONAL: MATRAVILLE 68409

Same day

Jan 23, 2025 7:46 AM 1180172 Date/Time received **Eurofins reference**

Sample Information

A detailed list of analytes logged into our LIMS, is included in the attached summary table.

Sample Temperature of chilled sample on the batch as recorded by Eurofins Sample Receipt: 13.8 degrees Celsius.

All samples have been received as described on the above COC.

COC has been completed correctly.

Attempt to chill was evident.

Appropriately preserved sample containers have been used.

All samples were received in good condition.

Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.

Appropriate sample containers have been used.

Sample containers for volatile analysis received with zero headspace.

Split sample sent to requested external lab.

Some samples have been subcontracted.

N/A Custody Seals intact (if used).

Notes

Contact

If you have any questions with respect to these samples, please contact your Analytical Services Manager:

Andrew Black on phone: (+61) 2 9900 8490 or by email: Andrew.Black@eurofinsanz.com

Results will be delivered electronically via email to Finn Billyard-Currey - fbillyardcurrey@jbsg.com.au.

Eurofins Environment Testing Australia Pty Ltd

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175 +61 3 8564 5000 email: EnviroSales@eurofinsanz.com NATA# 1261 Site# 1254

Geelong Sydney 19/8 Lewalan Street 179 Magowar Road Grovedale Girraween VIC 3216 NSW 2145 +61 3 8564 5000 +61 2 9900 8400 NATA# 1261 NATA# 1261 Site# 25403 Site# 18217

Canberra Brisbane Unit 1.2 Dacre Street Mitchell Murarrie ACT 2911 QLD 4172 +61 2 6113 8091 NATA# 1261 Site# 25466

1/21 Smallwood Place T: +61 7 3902 4600 NATA# 1261 Site# 20794 & 2780

Newcastle 1/2 Frost Drive Mayfield West NSW 2304 +61 2 4968 8448 NATA# 1261 Site# 25079

Eurofins ARL Pty Ltd Eurofins Environment Testing NZ Ltd ABN: 91 05 0159 898

> Auckland 35 O'Rorke Road Penrose, Auckland 1061 +64 9 526 4551 IANZ# 1327

NZBN: 9429046024954

Auckland (Focus) Unit C1/4 Pacific Rise. Mount Wellington, Auckland 1061 +64 9 525 0568 IANZ# 1308

Received:

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 +64 3 343 5201 IANZ# 1290

Tauranga 1277 Cameron Road. Gate Pa, Tauranga 3112 +64 9 525 0568 IANZ# 1402

web: www.eurofins.com.au

Company Name: JBS & G Australia (NSW) P/L Address: Level 8, 179 Elizabeth St

Sydney NSW 2000

Project Name: Project ID:

ADDITIONAL: MATRAVILLE

68409

Order No.: Report #:

Phone:

Fax:

Perth

Welshpool

WA 6106

NATA# 2377

46-48 Banksia Road

+61 8 6253 4444

Site# 2370 & 2554

1180172 02 8245 0300

Due: Jan 23, 2025 Priority: Contact Name:

Same day Finn Billyard-Currey

Jan 23, 2025 7:46 AM

Eurofins Analytical Services Manager: Andrew Black

		Sa	mple Detail			Zinc	Moisture Set
Sydney Laboratory - NATA # 1261 Site # 18217							Х
External Laboratory							
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID		
1	TP23_0.4-0.5	Dec 18, 2024		Soil	S25-Ja0035294	Х	Х
Test	Counts					1	1

Environment Testing

JBS & G Australia (NSW) P/L Level 8, 179 Elizabeth St Sydney NSW 2000

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection, proficiency testing scheme providers and reference materials producers reports and certificates.

Attention: Finn Billyard-Currey

Report 1180172-S

Project name ADDITIONAL: MATRAVILLE

Project ID 68409

Received Date Jan 23, 2025

Client Sample ID Sample Matrix Eurofins Sample No. Date Sampled			TP23_0.4-0.5 Soil S25-Ja0035294 Dec 18, 2024
Test/Reference	LOR	Unit	
Heavy Metals			
Zinc	5	mg/kg	6.8
Sample Properties			
% Moisture	1	%	1.5

Sample History

Where samples are submitted/analysed over several days, the last date of extraction is reported.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Heavy Metals	Sydney	Jan 23, 2025	28 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			
% Moisture	Sydney	Jan 23, 2025	14 Days

- Method: LTM-GEN-7080 Moisture

email: EnviroSales@eurofinsanz.com

Eurofins Environment Testing Australia Pty Ltd

Site# 25403

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175

+61 3 8564 5000

NATA# 1261

Site# 1254

Geelong Sydney 19/8 Lewalan Street 179 Magowar Road Grovedale Girraween VIC 3216 NSW 2145 +61 3 8564 5000 +61 2 9900 8400 NATA# 1261 NATA# 1261

Site# 18217

Canberra Unit 1.2 Dacre Street Mitchell ACT 2911 +61 2 6113 8091 NATA# 1261 Site# 25466

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 T: +61 7 3902 4600 NATA# 1261 Site# 20794 & 2780

Newcastle 1/2 Frost Drive Mayfield West NSW 2304 +61 2 4968 8448 NATA# 1261 Site# 25079

Eurofins ARL Pty Ltd ABN: 91 05 0159 898

46-48 Banksia Road +61 8 6253 4444 NATA# 2377 Site# 2370 & 2554

Auckland 35 O'Rorke Road Penrose, Auckland 1061 +64 9 526 4551 IANZ# 1327

NZBN: 9429046024954

Eurofins Environment Testing NZ Ltd

Auckland 1061

Received:

IANZ# 1308

Auckland (Focus) Christchurch Unit C1/4 Pacific Rise. 43 Detroit Drive Mount Wellington, Rolleston, Christchurch 7675 +64 3 343 5201 +64 9 525 0568 IANZ# 1290

Tauranga 1277 Cameron Road. Gate Pa, Tauranga 3112 +64 9 525 0568 IANZ# 1402

Company Name:

Address

web: www.eurofins.com.au

JBS & G Australia (NSW) P/L Level 8, 179 Elizabeth St

Sydney NSW 2000

Project Name: Project ID:

ADDITIONAL: MATRAVILLE

68409

Order No.: Report #: Phone:

Fax:

1180172 02 8245 0300

Perth

Welshpool

WA 6106

Due: **Priority:**

Same day Contact Name: Finn Billyard-Currey

Jan 23, 2025

Jan 23, 2025 7:46 AM

Eurofins Analytical Services Manager: Andrew Black

Sydney Laboratory - NATA # 1261 Site # 18217 X	Х
External Laboratory	
No Sample ID Sample Date Sampling Matrix LAB ID Time	
1 TP23_0.4-0.5 Dec 18, 2024 Soil S25-Ja0035294 X	Х
Test Counts 1	1

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follow guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013. They are included in this QC report where applicable. Additional QC data may be available on request
- 2. Unless otherwise stated, all soil/sediment/solid results are reported on a dry weight basis.
- 3. Unless otherwise stated, all biota/food results are reported on a wet weight basis on the edible portion.
- 4. For CEC results where the sample's origin is unknown or environmentally contaminated, the results should be used advisedly.
- Actual LORs are matrix dependent. Quoted LORs may be raised where sample extracts are diluted due to interferences
- Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds where annotated.
- 7. SVOC analysis on waters is performed on homogenised, unfiltered samples unless noted otherwise
- 8. Samples were analysed on an 'as received' basis.
- 9. Information identified in this report with blue colour indicates data provided by customers that may have an impact on the results.
- 10. This report replaces any interim results previously issued.

Holding Times

Please refer to the 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours before sample receipt deadlines as stated on the SRA

If the Laboratory did not receive the information in the required timeframe, and despite any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the sampling date: therefore, compliance with these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether, the holding time is seven days; however, for all other VOCs, such as BTEX or C6-10 TRH, the holding time is 14 days

Units

mg/kg: milligrams per kilogram mg/L: milligrams per litre ppm: parts per million μg/L: micrograms per litre ppb: parts per billion %: Percentage

org/100 mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100 mL: Most Probable Number of organisms per 100 millilitres

Colour: Pt-Co Units (CU) CFU: Colony Forming Unit

Terms

APHA American Public Health Association CEC Cation Exchange Capacity COC Chain of Custody

CP Client Parent - QC was performed on samples pertaining to this report CRM Certified Reference Material (ISO17034) - reported as percent recovery.

Dry Where moisture has been determined on a solid sample, the result is expressed on a dry weight basis

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

LOR Limit of Reporting

LCS Laboratory Control Sample - reported as percent recovery.

Method Blank In the case of solid samples, these are performed on laboratory-certified clean sands and in the case of water samples, these are performed on de-ionised water NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC represents the sequence or batch that client samples were analysed within.

RPD Relative Percent Difference between two Duplicate pieces of analysis SPIKE Addition of the analyte to the sample and reported as percentage recovery.

SRA Sample Receipt Advice

The addition of a similar compound to the analyte target is reported as percentage recovery. See below for acceptance criteria Surr - Surrogate

Tributyltin oxide (bis-tributyltin oxide) - individual tributyltin compounds cannot be identified separately in the environment; however, free tributyltin was measured, and its values were converted stoichiometrically into tributyltin oxide for comparison with regulatory limits. TRTO

TCI P Toxicity Characteristic Leaching Procedure TEQ Toxic Equivalency Quotient or Total Equivalence

QSM US Department of Defense Quality Systems Manual Version 6.0

US EPA United States Environmental Protection Agency

Sum of PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA WA DWER

QC - Acceptance Criteria

The acceptance criteria should only be used as a guide and may be different when site-specific Sampling Analysis and Quality Plan (SAQP) have been implemented.

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is ≤30%; however, the following acceptance guidelines are equally applicable:

Results <10 times the LOR: No Limit

Results between 10-20 times the LOR: RPD must lie between 0-50% Results >20 times the LOR: RPD must lie between 0-30%

NOTE: pH duplicates are reported as a range, not as RPD

Surrogate Recoveries: Recoveries must lie between 20-130% for Speciated Phenols & 50-150% for PFAS. SVOCs recoveries 20 - 150%, VOC recoveries 50 - 150%

PFAS field samples containing surrogate recoveries above the QC limit designated in QSM 6.0, where no positive PFAS results have been reported or reviewed, and no data was affected.

QC Data General Comments

- 1. Where a result is reported as less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown are not data from your samples
- 3. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore, laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 4. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of recovery, the term "INT" appears against that analyte.
- 5. For Matrix Spikes and LCS results, a dash "-" in the report means that the specific analyte was not added to the QC sample.
- 6. Duplicate RPDs are calculated from raw analytical data; thus, it is possible to have two sets of data

Environment Testing

Quality Control Results

Test			Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Method Blank									
Heavy Metals									
Zinc			mg/kg	< 5			5	Pass	
LCS - % Recovery									
Heavy Metals									
Zinc			%	119			80-120	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery									
Heavy Metals				Result 1					
Zinc	N25-Ja0028870	NCP	%	94			75-125	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Zinc	S25-Ja0034301	NCP	mg/kg	6.4	12	58	30%	Fail	Q02
Duplicate									
Sample Properties				Result 1	Result 2	RPD			
% Moisture	S25-Ja0035294	CP	%	1.5	1.3	14	30%	Pass	

Comments

Sample Integrity

 Custody Seals Intact (if used)
 N/A

 Attempt to Chill was evident
 Yes

 Sample correctly preserved
 Yes

 Appropriate sample containers have been used
 Yes

 Sample containers for volatile analysis received with minimal headspace
 Yes

 Samples received within HoldingTime
 Yes

 Some samples have been subcontracted
 No

Qualifier Codes/Comments

Code Description

Q02 The duplicate %RPD is outside the recommended acceptance criteria. Further analysis indicates sample heterogeneity as the cause

Authorised by:

Bonnie Pu Analytical Services Manager Mickael Ros Senior Analyst-Metal

Ryan Phillips Senior Analyst-Sample Properties

Golf and

Glenn Jackson Managing Director

Final Report - this report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please $\underline{\text{click here.}}$

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.